An Analysis of Different Distance-Linkage Methods for Clustering Gene Expression Data and Observing Pleiotropy: Empirical Study (Preprint)

Author:

Choudhury JoydhritiORCID,Ashraf Faisal BinORCID

Abstract

BACKGROUND

Large amounts of biological data have been generated over the last few decades, encouraging scientists to look for connections between genes that cause various diseases. Clustering illustrates such a relationship between numerous species and genes. Finding an appropriate distance-linkage metric to construct clusters from diverse biological data sets has thus become critical. Pleiotropy is also important for a gene’s expression to vary and create varied consequences in living things. Finding the pleiotropy of genes responsible for various diseases has become a major research challenge.

OBJECTIVE

Our goal was to establish the optimal distance-linkage strategy for creating reliable clusters from diverse data sets and identifying the common genes that cause various tumors to observe genes with pleiotropic effect.

METHODS

We considered 4 linking methods—single, complete, average, and ward—and 3 distance metrics—Euclidean, maximum, and Manhattan distance. For assessing the quality of different sets of clusters, we used a fitness function that combines silhouette width and within-cluster distance.

RESULTS

According to our findings, the maximum distance measure produces the highest-quality clusters. Moreover, for medium data set, the average linkage method, and for large data set, the ward linkage method works best. The outcome is not improved by using ensemble clustering. We also discovered genes that cause 3 different cancers and used gene enrichment to confirm our findings.

CONCLUSIONS

Accuracy is crucial in clustering, and we investigated the accuracy of numerous clustering techniques in our research. Other studies may aid related works if the data set is similar to ours.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3