AI-Driven Diagnostic Assistance in Medical Inquiry: Reinforcement Learning Algorithm Development and Validation (Preprint)

Author:

Zou XuanORCID,He WeijieORCID,Huang YuORCID,Ouyang YiORCID,Zhang ZhenORCID,Wu YuORCID,Wu YongshengORCID,Feng LiliORCID,Wu ShengORCID,Yang MengqiORCID,Chen XuyanORCID,Zheng YefengORCID,Jiang RuiORCID,Chen TingORCID

Abstract

BACKGROUND

For medical diagnosis, clinicians typically begin with a patient’s chief concerns, followed by questions about symptoms and medical history, physical examinations, and requests for necessary auxiliary examinations to gather comprehensive medical information. This complex medical investigation process has yet to be modeled by existing artificial intelligence (AI) methodologies.

OBJECTIVE

The aim of this study was to develop an AI-driven medical inquiry assistant for clinical diagnosis that provides inquiry recommendations by simulating clinicians’ medical investigating logic via reinforcement learning.

METHODS

We compiled multicenter, deidentified outpatient electronic health records from 76 hospitals in Shenzhen, China, spanning the period from July to November 2021. These records consisted of both unstructured textual information and structured laboratory test results. We first performed feature extraction and standardization using natural language processing techniques and then used a reinforcement learning actor-critic framework to explore the rational and effective inquiry logic. To align the inquiry process with actual clinical practice, we segmented the inquiry into 4 stages: inquiring about symptoms and medical history, conducting physical examinations, requesting auxiliary examinations, and terminating the inquiry with a diagnosis. External validation was conducted to validate the inquiry logic of the AI model.

RESULTS

This study focused on 2 retrospective inquiry-and-diagnosis tasks in the emergency and pediatrics departments. The emergency departments provided records of 339,020 consultations including mainly children (median age 5.2, IQR 2.6-26.1 years) with various types of upper respiratory tract infections (250,638/339,020, 73.93%). The pediatrics department provided records of 561,659 consultations, mainly of children (median age 3.8, IQR 2.0-5.7 years) with various types of upper respiratory tract infections (498,408/561,659, 88.73%). When conducting its own inquiries in both scenarios, the AI model demonstrated high diagnostic performance, with areas under the receiver operating characteristic curve of 0.955 (95% CI 0.953-0.956) and 0.943 (95% CI 0.941-0.944), respectively. When the AI model was used in a simulated collaboration with physicians, it notably reduced the average number of physicians’ inquiries to 46% (6.037/13.26; 95% CI 6.009-6.064) and 43% (6.245/14.364; 95% CI 6.225-6.269) while achieving areas under the receiver operating characteristic curve of 0.972 (95% CI 0.970-0.973) and 0.968 (95% CI 0.967-0.969) in the scenarios. External validation revealed a normalized Kendall τ distance of 0.323 (95% CI 0.301-0.346), indicating the inquiry consistency of the AI model with physicians.

CONCLUSIONS

This retrospective analysis of predominantly respiratory pediatric presentations in emergency and pediatrics departments demonstrated that an AI-driven diagnostic assistant had high diagnostic performance both in stand-alone use and in simulated collaboration with clinicians. Its investigation process was found to be consistent with the clinicians’ medical investigation logic. These findings highlight the diagnostic assistant’s promise in assisting the decision-making processes of health care professionals.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3