Personalized Machine Learning using Passive Sensing and Ecological Momentary Assessments for Meth Users in Hawaii: A Research Protocol (Preprint)

Author:

Washington PeterORCID

Abstract

BACKGROUND

Artificial intelligence (AI)-powered digital therapies which detect meth cravings delivered on consumer devices have the potential to reduce these disparities by providing remote and accessible care solutions to Native Hawaiians, Filipinos, and Pacific Islanders (NHFPI) communities with limited care solutions. However, NHFPI are fully understudied with respect to digital therapeutics and AI health sensing despite using technology at the same rates as other races.

OBJECTIVE

We seek to fulfill two research aims: (1) Understand the feasibility of continuous remote digital monitoring and ecological momentary assessments (EMAs) in NHFPI in Hawaii by curating a novel dataset of longitudinal FitBit biosignals with corresponding craving and substance use labels. (2) Develop personalized AI models which predict meth craving events in real time using wearable sensor data.

METHODS

We will develop personalized AI/ML (artificial intelligence/machine learning) models for meth use and craving prediction in 40 NHFPI individuals by curating a novel dataset of real-time FitBit biosensor readings and corresponding participant annotations (i.e., raw self-reported substance use data) of their meth use and cravings. In the process of collecting this dataset, we will glean insights about cultural and other human factors which can challenge the proper acquisition of precise annotations. With the resulting dataset, we will employ self-supervised learning (SSL) AI approaches, which are a new family of ML methods that allow a neural network to be trained without labels by being optimized to make predictions about the data itself. The inputs to the proposed AI models are FitBit biosensor readings and the outputs are predictions of meth use or craving. This paradigm is gaining increased attention in AI for healthcare.

RESULTS

This protocol was approved by the University of Hawaii Institutional Review Board (IRB) under protocol #2022-01030. Additionally, this study has received further scrutiny and approval via the University of Hawaii’s Data Governance Process under request #230410-3.

CONCLUSIONS

We expect to develop models which significantly outperform traditional supervised methods by fine-tuning to an individual subject’s data. Such methods will enable AI solutions which work with the limited data available from NHFPI populations and which are inherently unbiased due to their personalized nature. Such models can support future AI-powered digital therapeutics for substance abuse.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3