BACKGROUND
The World Health Organization (WHO) declared COVID-19 as a global pandemic on January 30, 2020. However, the pandemic has not been over yet. Furthermore, in the first quartal of 2021, some countries face the third wave of the pandemic. During the difficult time, the development of the vaccines for COVID-19 accelerates rapidly. Understanding the public perception of the COVID-19 Vaccine according to the data collected from social media can widen the perspective on the state of the global pandemic
OBJECTIVE
This study explores and analyzes the latent topic on COVID-19 Vaccine Tweet posted by individuals from various countries by using two-stage topic modeling.
METHODS
A two-stage analysis in topic modeling was proposed to investigating people’s reactions in five countries. The first stage is Latent Dirichlet Allocation that produces the latent topics with the corresponding term distributions that facilitate the investigators to understand the main issues or opinions. The second stage then performs agglomerative clustering on the latent topics based on Hellinger distance, which merges close topics hierarchically into topic clusters to visualize those topics in either tree or graph views.
RESULTS
In general, the topic discussion regarding the COVID-19 Vaccine in five countries is similar. Topic themes such as "first vaccine" and & "vaccine effect" dominate the public discussion. The remarkable point is that people in some countries have some topic themes, such as "politician opinion" and " stay home" in Canada, "emergency" in India, and & "blood clots" in the United Kingdom. The analysis also shows the most popular COVID-19 Vaccine, which is gaining more public interest.
CONCLUSIONS
With LDA and Hierarchical clustering, two-stage topic modeling is powerful for visualizing the latent topics and understanding the public perception regarding the COVID-19 Vaccine.