Analysis and Visualization Latent Topic on COVID-19 Vaccine Tweet use two-stage topic modeling (Preprint)

Author:

Faizah FaizahORCID,Lin Bor-Shen

Abstract

BACKGROUND

The World Health Organization (WHO) declared COVID-19 as a global pandemic on January 30, 2020. However, the pandemic has not been over yet. Furthermore, in the first quartal of 2021, some countries face the third wave of the pandemic. During the difficult time, the development of the vaccines for COVID-19 accelerates rapidly. Understanding the public perception of the COVID-19 Vaccine according to the data collected from social media can widen the perspective on the state of the global pandemic

OBJECTIVE

This study explores and analyzes the latent topic on COVID-19 Vaccine Tweet posted by individuals from various countries by using two-stage topic modeling.

METHODS

A two-stage analysis in topic modeling was proposed to investigating people’s reactions in five countries. The first stage is Latent Dirichlet Allocation that produces the latent topics with the corresponding term distributions that facilitate the investigators to understand the main issues or opinions. The second stage then performs agglomerative clustering on the latent topics based on Hellinger distance, which merges close topics hierarchically into topic clusters to visualize those topics in either tree or graph views.

RESULTS

In general, the topic discussion regarding the COVID-19 Vaccine in five countries is similar. Topic themes such as "first vaccine" and & "vaccine effect" dominate the public discussion. The remarkable point is that people in some countries have some topic themes, such as "politician opinion" and " stay home" in Canada, "emergency" in India, and & "blood clots" in the United Kingdom. The analysis also shows the most popular COVID-19 Vaccine, which is gaining more public interest.

CONCLUSIONS

With LDA and Hierarchical clustering, two-stage topic modeling is powerful for visualizing the latent topics and understanding the public perception regarding the COVID-19 Vaccine.

Publisher

JMIR Publications Inc.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3