Exploring Visual Representation of #ShoutYourAbortion Hashtag Movement and the Public’s Responses on Instagram: Descriptive and Infodemiology Study (Preprint)

Author:

‍Lee SunmiORCID,Kim YunhwanORCID

Abstract

BACKGROUND

Hashtag movement has become one of the major ways of online movement, but few studies have examined how social media photos were used for the movement. Also, it has not been actively investigated how photo features were related to the public’s responses in hashtag movements.

OBJECTIVE

The aim of the present research was to explore Instagram photos with #ShoutYourAbortion hashtag, as an example of hashtag movements via photos, in terms of their visual representation and the relationships between photo features and the public’s responses to the photos.

METHODS

Instagram photos with #ShoutYourAbortion hashtag, 11,176 in total, were downloaded, and their content and embedded texts were analyzed using online artificial intelligence services. The photos were clustered into subgroups based on the features extracted using a pretrained convolutional neural network model. The resulting clusters were compared in terms of their content tags, embedded texts, and photo features which were manually extracted at the content and pixel levels. The public’s responses were measured by engagement and comment sentiment. Correlational analysis and predictive analytics were conducted to examine the relationships between photo features and the public’s responses.

RESULTS

It was found that the photos in the text category took the largest share (57.19%), and the embedded texts were mainly about stories told in first person point of view as a woman. A possible evidence of hashtag hijacking was observed. The photos were grouped into two clusters; the first cluster comprised photos which exhibit text materials on them, while the second cluster consisted of photos which contain human faces with texts. The photos in the first cluster were brighter, while the photos in the second cluster were more colorful than the others. And public responses were found to be related to photo features such as size of faces, happy emotion, and share of warm colors. Engagement was predicted from the photo features with an acceptable level of accuracy, while comment sentiment was not.

CONCLUSIONS

This This study has shown the visual representation of #ShoutYourAbortion hashtag movement. It has also shown how photo features at content and pixel levels were related to the public’s responses to the photos. The results are expected to contribute to the understanding of hashtag movements via photos and making photos in hashtag movements more appealing to the public.

CLINICALTRIAL

Not Applicable

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3