Automated Machine Learning Analysis of Patients With Chronic Skin Disease Using a Medical Smartphone App: Retrospective Study (Preprint)

Author:

Bibi IgorORCID,Schaffert DanielORCID,Blauth MaraORCID,Lull ChristianORCID,von Ahnen Jan AlwinORCID,Gross GeorgORCID,Weigandt Wanja AlexanderORCID,Knitza JohannesORCID,Kuhn SebastianORCID,Benecke JohannesORCID,Leipe JanORCID,Schmieder AstridORCID,Olsavszky VictorORCID

Abstract

BACKGROUND

Rapid digitalization in health care has led to the adoption of digital technologies; however, limited trust in internet-based health decisions and the need for technical personnel hinder the use of smartphones and machine learning applications. To address this, automated machine learning (AutoML) is a promising tool that can empower health care professionals to enhance the effectiveness of mobile health apps.

OBJECTIVE

We used AutoML to analyze data from clinical studies involving patients with chronic hand and/or foot eczema or psoriasis vulgaris who used a smartphone monitoring app. The analysis focused on itching, pain, Dermatology Life Quality Index (DLQI) development, and app use.

METHODS

After extensive data set preparation, which consisted of combining 3 primary data sets by extracting common features and by computing new features, a new pseudonymized secondary data set with a total of 368 patients was created. Next, multiple machine learning classification models were built during AutoML processing, with the most accurate models ultimately selected for further data set analysis.

RESULTS

Itching development for 6 months was accurately modeled using the light gradient boosted trees classifier model (log loss: 0.9302 for validation, 1.0193 for cross-validation, and 0.9167 for holdout). Pain development for 6 months was assessed using the random forest classifier model (log loss: 1.1799 for validation, 1.1561 for cross-validation, and 1.0976 for holdout). Then, the random forest classifier model (log loss: 1.3670 for validation, 1.4354 for cross-validation, and 1.3974 for holdout) was used again to estimate the DLQI development for 6 months. Finally, app use was analyzed using an elastic net blender model (area under the curve: 0.6567 for validation, 0.6207 for cross-validation, and 0.7232 for holdout). Influential feature correlations were identified, including BMI, age, disease activity, DLQI, and Hospital Anxiety and Depression Scale-Anxiety scores at follow-up. App use increased with BMI >35, was less common in patients aged >47 years and those aged 23 to 31 years, and was more common in those with higher disease activity. A Hospital Anxiety and Depression Scale-Anxiety score >8 had a slightly positive effect on app use.

CONCLUSIONS

This study provides valuable insights into the relationship between data characteristics and targeted outcomes in patients with chronic eczema or psoriasis, highlighting the potential of smartphone and AutoML techniques in improving chronic disease management and patient care.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3