Stroke Survivors on Twitter: Sentiment and Topic Analysis From a Gender Perspective (Preprint)

Author:

Garcia-Rudolph AlejandroORCID,Laxe SaraORCID,Saurí JoanORCID,Bernabeu Guitart MontserratORCID

Abstract

BACKGROUND

Stroke is the worldwide leading cause of long-term disabilities. Women experience more activity limitations, worse health-related quality of life, and more poststroke depression than men. Twitter is increasingly used by individuals to broadcast their day-to-day happenings, providing unobtrusive access to samples of spontaneously expressed opinions on all types of topics and emotions.

OBJECTIVE

This study aimed to consider the raw frequencies of words in the collection of tweets posted by a sample of stroke survivors and to compare the posts by gender of the survivor for 8 basic emotions (anger, fear, anticipation, surprise, joy, sadness, trust and disgust); determine the proportion of each emotion in the collection of tweets and statistically compare each of them by gender of the survivor; extract the main topics (represented as sets of words) that occur in the collection of tweets, relative to each gender; and assign happiness scores to tweets and topics (using a well-established tool) and compare them by gender of the survivor.

METHODS

We performed sentiment analysis based on a state-of-the-art lexicon (National Research Council) with syuzhet R package. The emotion scores for men and women were first subjected to an F-test and then to a Wilcoxon rank sum test. We extended the emotional analysis, assigning happiness scores with the hedonometer (a tool specifically designed considering Twitter inputs). We calculated daily happiness average scores for all tweets. We created a term map for an exploratory clustering analysis using VosViewer software. We performed structural topic modelling with stm R package, allowing us to identify main topics by gender. We assigned happiness scores to all the words defining the main identified topics and compared them by gender.

RESULTS

We analyzed 800,424 tweets posted from August 1, 2007 to December 1, 2018, by 479 stroke survivors: Women (n=244) posted 396,898 tweets, and men (n=235) posted 403,526 tweets. The stroke survivor condition and gender as well as membership in at least 3 stroke-specific Twitter lists of active users were manually verified for all 479 participants. Their total number of tweets since 2007 was 5,257,433; therefore, we analyzed the most recent 15.2% of all their tweets. Positive emotions (anticipation, trust, and joy) were significantly higher (P<.001) in women, while negative emotions (disgust, fear, and sadness) were significantly higher (P<.001) in men in the analysis of raw frequencies and proportion of emotions. Happiness mean scores throughout the considered period show higher levels of happiness in women. We calculated the top 20 topics (with percentages and CIs) more likely addressed by gender and found that women’s topics show higher levels of happiness scores.

CONCLUSIONS

We applied two different approaches—the Plutchik model and hedonometer tool—to a sample of stroke survivors’ tweets. We conclude that women express positive emotions and happiness much more than men.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3