Systematic Design and Evaluation of Drug Repurposing-Oriented Alzheimer’s Disease Ontology (Preprint)

Author:

Li FangORCID,Amith Muhammad "Tuan",Xiong Grace,Du Jingcheng,Xiang Yang,Rao Guozheng,Pham Huy Anh,Tao Cui

Abstract

BACKGROUND

Alzheimer’s Disease (AD) is a devastating neurodegenerative disease, of which the pathophysiology is insufficiently understood, and the curative drugs are long-awaited to be developed. Computational drug repurposing introduces a promising complementary strategy of drug discovery, which benefits from an accelerated development process and decreased failure rate. However, generating new hypotheses in AD drug repurposing requires multi-dimensional and multi-disciplinary data integration and connection, posing a great challenge in the era of big data. By integrating data with computable semantics, ontologies could infer unknown relationships through automated reasoning and fulfill an essential role in supporting computational drug repurposing.

OBJECTIVE

The study aimed to systematically design a robust Drug Repurposing-Oriented Alzheimer’s Disease Ontology (DROADO), which could model fundamental elements and their relationships involved in AD drug repurposing and integrate their up-to-date research advance comprehensively.

METHODS

We devised a core knowledge model of computational AD drug repurposing, based on both pre-genomic and post-genomic research paradigms. The model centered on the possible AD pathophysiology and abstracted the essential elements and their relationships. We adopted a hybrid strategy to populate the ontology (classes and properties), including importing from well-curated databases, extracting from high-quality papers and reusing the existing ontologies. We also leveraged n-ary relations and nanopublication graphs to enrich the object relations, making the knowledge stored in the ontology more powerful in supporting computational processing. The initially built ontology was evaluated by a semiotic-driven and web-based tool Ontokeeper.

RESULTS

The current version of DROADO was composed of 1,021 classes, 23 object properties and 3,207 axioms, depicting a fundamental network related to computational neuroscience concepts and relationships. Assessment using semiotic evaluation metrics by OntoKeeper indicated sufficient preliminary quality (semantics, usefulness and community-consensus) of the ontology.

CONCLUSIONS

As an in-depth knowledge base, DROADO would be promising in enabling computational algorithms to realize supervised mining from multi-source data, and ultimately, facilitating the discovery of novel AD drug targets and the realization of AD drug repurposing.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3