A Combination of Indoor Localization and Wearable Sensor–Based Physical Activity Recognition to Assess Older Patients Undergoing Subacute Rehabilitation: Baseline Study Results (Preprint)

Author:

Ramezani RaminORCID,Zhang WenhaoORCID,Xie ZhuoerORCID,Shen JohnORCID,Elashoff DavidORCID,Roberts PamelaORCID,Stanton AnnetteORCID,Eslami MichelleORCID,Wenger NeilORCID,Sarrafzadeh MajidORCID,Naeim ArashORCID

Abstract

BACKGROUND

Health care, in recent years, has made great leaps in integrating wireless technology into traditional models of care. The availability of ubiquitous devices such as wearable sensors has enabled researchers to collect voluminous datasets and harness them in a wide range of health care topics. One of the goals of using on-body wearable sensors has been to study and analyze human activity and functional patterns, thereby predicting harmful outcomes such as falls. It can also be used to track precise individual movements to form personalized behavioral patterns, to standardize the concept of frailty, well-being/independence, etc. Most wearable devices such as activity trackers and smartwatches are equipped with low-cost embedded sensors that can provide users with health statistics. In addition to wearable devices, Bluetooth low-energy sensors known as BLE beacons have gained traction among researchers in ambient intelligence domain. The low cost and durability of newer versions have made BLE beacons feasible gadgets to yield indoor localization data, an adjunct feature in human activity recognition. In the studies by Moatamed et al and the patent application by Ramezani et al, we introduced a generic framework (Sensing At-Risk Population) that draws on the classification of human movements using a 3-axial accelerometer and extracting indoor localization using BLE beacons, in concert.

OBJECTIVE

The study aimed to examine the ability of combination of physical activity and indoor location features, extracted at baseline, on a cohort of 154 rehabilitation-dwelling patients to discriminate between subacute care patients who are re-admitted to the hospital versus the patients who are able to stay in a community setting.

METHODS

We analyzed physical activity sensor features to assess activity time and intensity. We also analyzed activities with regard to indoor localization. Chi-square and Kruskal-Wallis tests were used to compare demographic variables and sensor feature variables in outcome groups. Random forests were used to build predictive models based on the most significant features.

RESULTS

Standing time percentage (P<.001, d=1.51), laying down time percentage (P<.001, d=1.35), resident room energy intensity (P<.001, d=1.25), resident bed energy intensity (P<.001, d=1.23), and energy percentage of active state (P=.001, d=1.24) are the 5 most statistically significant features in distinguishing outcome groups at baseline. The energy intensity of the resident room (P<.001, d=1.25) was achieved by capturing indoor localization information. Random forests revealed that the energy intensity of the resident room, as a standalone attribute, is the most sensitive parameter in the identification of outcome groups (area under the curve=0.84).

CONCLUSIONS

This study demonstrates that a combination of indoor localization and physical activity tracking produces a series of features at baseline, a subset of which can better distinguish between at-risk patients that can gain independence versus the patients that are rehospitalized.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3