Research and application of artificial intelligence based on electronic health record data from patients with cancer: a systematic review (Preprint)

Author:

Yang XinyuORCID,Mu Dongmei,Peng Hao,Li HuaORCID,Wang Ying,Wang Ping,Wang Yue,Han Siqi

Abstract

BACKGROUND

With the accumulation of electronic health records data and the development of artificial intelligence, patients with cancer urgently need new evidence of more personalized clinical and demographic characteristics and more sophisticated treatment and prevention strategies. However, no research has systematically analyzed the application and significance of electronic health records and artificial intelligence in cancer care.

OBJECTIVE

In this study, we reviewed the literature on the application of AI based on EHR data from patients with cancer, hoping to provide reference for subsequent researchers, and help accelerate the application of EHR data and AI technology in the field of cancer, so as to help patients get more scientific and accurate treatment.

METHODS

Three databases were systematically searched to retrieve potentially relevant articles published from January 2009 to October 2020. A combination of terms related to "electronic health records", "artificial intelligence" and "cancer" was used to search for these publications.

RESULTS

Of the 1034 articles considered, 148 met the inclusion criteria. The review has shown that ensemble methods and deep learning were on the rise. It presented the representative literatures on the subfield of cancer diagnosis, treatment and care. In addition, the vast majority of studies in this area were based on private institutional databases, resulting in poor portability of the proposed methodology process.

CONCLUSIONS

The use of new methods and electronic health records data sharing and fusion were recommended for future research. With the help of specialists, artificial intelligence and the mining of massive electronic medical records could provide great opportunities for improving cancer management.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3