Pain Assessment Tool With Electrodermal Activity for Postoperative Patients: Method Validation Study (Preprint)

Author:

Aqajari Seyed Amir HosseinORCID,Cao RuiORCID,Kasaeyan Naeini EmadORCID,Calderon Michael-DavidORCID,Zheng KaiORCID,Dutt NikilORCID,Liljeberg PasiORCID,Salanterä SannaORCID,Nelson Ariana MORCID,Rahmani Amir MORCID

Abstract

BACKGROUND

Accurate, objective pain assessment is required in the health care domain and clinical settings for appropriate pain management. Automated, objective pain detection from physiological data in patients provides valuable information to hospital staff and caregivers to better manage pain, particularly for patients who are unable to self-report. Galvanic skin response (GSR) is one of the physiologic signals that refers to the changes in sweat gland activity, which can identify features of emotional states and anxiety induced by varying pain levels. This study used different statistical features extracted from GSR data collected from postoperative patients to detect their pain intensity. To the best of our knowledge, this is the first work building pain models using postoperative adult patients instead of healthy subjects.

OBJECTIVE

The goal of this study was to present an automatic pain assessment tool using GSR signals to predict different pain intensities in noncommunicative, postoperative patients.

METHODS

The study was designed to collect biomedical data from postoperative patients reporting moderate to high pain levels. We recruited 25 participants aged 23-89 years. First, a transcutaneous electrical nerve stimulation (TENS) unit was employed to obtain patients' baseline data. In the second part, the Empatica E4 wristband was worn by patients while they were performing low-intensity activities. Patient self-report based on the numeric rating scale (NRS) was used to record pain intensities that were correlated with objectively measured data. The labels were down-sampled from 11 pain levels to 5 different pain intensities, including the baseline. We used 2 different machine learning algorithms to construct the models. The mean decrease impurity method was used to find the top important features for pain prediction and improve the accuracy. We compared our results with a previously published research study to estimate the true performance of our models.

RESULTS

Four different binary classification models were constructed using each machine learning algorithm to classify the baseline and other pain intensities (Baseline [BL] vs Pain Level [PL] 1, BL vs PL2, BL vs PL3, and BL vs PL4). Our models achieved higher accuracy for the first 3 pain models than the BioVid paper approach despite the challenges in analyzing real patient data. For BL vs PL1, BL vs PL2, and BL vs PL4, the highest prediction accuracies were achieved when using a random forest classifier (86.0, 70.0, and 61.5, respectively). For BL vs PL3, we achieved an accuracy of 72.1 using a k-nearest-neighbor classifier.

CONCLUSIONS

We are the first to propose and validate a pain assessment tool to predict different pain levels in real postoperative adult patients using GSR signals. We also exploited feature selection algorithms to find the top important features related to different pain intensities.

INTERNATIONAL REGISTERED REPORT

RR2-10.2196/17783

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3