Effectiveness of Using Mental Health Mobile Apps as Digital Antidepressants for Reducing Anxiety and Depression: Protocol for a Multiple Baseline Across-Individuals Design (Preprint)

Author:

Marshall Jamie MORCID,Dunstan Debra AORCID,Bartik WarrenORCID

Abstract

BACKGROUND

The use of mental health mobile apps to treat anxiety and depression is widespread and growing. Several reviews have found that most of these apps do not have published evidence for their effectiveness, and existing research has primarily been undertaken by individuals and institutions that have an association with the app being tested. Another reason for the lack of research is that the execution of the traditional randomized controlled trial is time prohibitive in this profit-driven industry. Consequently, there have been calls for different methodologies to be considered. One such methodology is the single-case design, of which, to the best of our knowledge, no peer-reviewed published example with mental health apps for anxiety and/or depression could be located.

OBJECTIVE

The aim of this study is to examine the effectiveness of 5 apps (<i>Destressify, MoodMission, Smiling Mind, MindShift,</i> and <i>SuperBetter</i>) in reducing symptoms of anxiety and/or depression. These apps were selected because they are publicly available, free to download, and have published evidence of efficacy.

METHODS

A multiple baseline across-individuals design will be employed. A total of 50 participants will be recruited (10 for each app) who will provide baseline data for 20 days. The sequential introduction of an intervention phase will commence once baseline readings have indicated stability in the measures of participants’ mental health and will proceed for 10 weeks. Postintervention measurements will continue for a further 20 days. Participants will be required to provide daily subjective units of distress (SUDS) ratings via SMS text messages and will complete other measures at 5 different time points, including at 6-month follow-up. SUDS data will be examined via a time series analysis across the experimental phases. Individual analyses of outcome measures will be conducted to detect clinically significant changes in symptoms using the statistical approach proposed by Jacobson and Truax. Participants will rate their app on several domains at the end of the intervention.

RESULTS

Participant recruitment commenced in January 2020. The postintervention phase will be completed by June 2020. Data analysis will commence after this. A write-up for publication is expected to be completed after the follow-up phase is finalized in January 2021.

CONCLUSIONS

If the apps prove to be effective as hypothesized, this will provide collateral evidence of their efficacy. It could also provide the benefits of (1) improved access to mental health services for people in rural areas, lower socioeconomic groups, and children and adolescents and (2) improved capacity to enhance face-to-face therapy through digital homework tasks that can be shared instantly with a therapist. It is also anticipated that this methodology could be used for other mental health apps to bolster the independent evidence base for this mode of treatment.

CLINICALTRIAL

Australian and New Zealand Clinical Trials Registry ACTRN12619001302145p, http://www.ANZCTR.org.au/ACTRN12619001302145p.aspx

INTERNATIONAL REGISTERED REPORT

PRR1-10.2196/17159

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3