Informing the Development of a Digital Health Platform Through Universal Points of Care: Qualitative Survey Study (Preprint)

Author:

Craven Michael PORCID,Andrews Jacob AORCID,Lang Alexandra RORCID,Simblett Sara KORCID,Bruce StuartORCID,Thorpe SarahORCID,Wykes TilORCID,Morriss RichardORCID,Hollis ChrisORCID,

Abstract

BACKGROUND

Epilepsy, multiple sclerosis (MS), and depression are chronic conditions where technology holds potential in clinical monitoring and self-management. Over 5 years, the Remote Assessment of Disease and Relapse - Central Nervous System (RADAR-CNS) consortium has explored the application of remote measurement technology (RMT) to the management and self-management of patients in these clinical areas. The consortium is large and includes clinical and nonclinical researchers as well as a patient advisory board.

OBJECTIVE

This formative development study aimed to understand how consortium members viewed the potential of RMT in epilepsy, MS, and depression.

METHODS

In this qualitative survey study, we developed a methodological tool, universal points of care (UPOC), to gather views on the potential use, acceptance, and value of a novel RMT platform across 3 chronic conditions (MS, epilepsy, and depression). UPOC builds upon use case scenario methodology, using expert elicitation and analysis of care pathways to develop scenarios applicable across multiple conditions. After developing scenarios, we elicited views on the potential of RMT in these different scenarios through a survey administered to 28 subject matter experts, consisting of 16 health care practitioners; 5 health care services researchers; and 7 people with lived experience of MS, epilepsy, or depression. Survey results were analyzed thematically and using an existing framework of factors describing links between design and context.

RESULTS

The survey elicited potential beneficial applications of the RADAR-CNS RMT system as well as patient, clinical, and nonclinical requirements of RMT across the 3 conditions of interest. Potential applications included recognition of early warning signs of relapse from subclinical signals for MS, seizure precipitant signals for epilepsy, and behavior change in depression. RMT was also thought to have the potential to overcome the problem of underreporting, which is especially problematic in epilepsy, and to allow the capture of secondary symptoms that are not generally collected in MS, such as mood.

CONCLUSIONS

Respondents suggested novel and unanticipated uses of RMT, including the use of RMT to detect emerging side effects of treatment, enable behavior change for sleep regulation and activity, and offer a way to include family and other carers in a care network, which could assist with goal setting. These suggestions, together with others from this and related work, will inform the development of the system for its eventual application in research and clinical practice. The UPOC methodology was effective in directing respondents to consider the value of health care technologies in condition-specific experiences of everyday life and working practice.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3