Early Prediction of Unplanned 30-Day Hospital Readmission: Model Development and Retrospective Data Analysis (Preprint)

Author:

Zhao PengORCID,Yoo IllhoiORCID,Naqvi Syed HORCID

Abstract

BACKGROUND

Existing readmission reduction solutions tend to focus on complementing inpatient care with enhanced care transition and postdischarge interventions. These solutions are initiated near or after discharge, when clinicians’ impact on inpatient care is ending. Preventive intervention during hospitalization is an underexplored area that holds potential for reducing readmission risk. However, it is challenging to predict readmission risk at the early stage of hospitalization because few data are available.

OBJECTIVE

The objective of this study was to build an early prediction model of unplanned 30-day hospital readmission using a large and diverse sample. We were also interested in identifying novel readmission risk factors and protective factors.

METHODS

We extracted the medical records of 96,550 patients in 205 participating Cerner client hospitals across four US census regions in 2016 from the Health Facts database. The model was built with index admission data that can become available within 24 hours and data from previous encounters up to 1 year before the index admission. The candidate models were evaluated for performance, timeliness, and generalizability. Multivariate logistic regression analysis was used to identify readmission risk factors and protective factors.

RESULTS

We developed six candidate readmission models with different machine learning algorithms. The best performing model of extreme gradient boosting (XGBoost) achieved an area under the receiver operating characteristic curve of 0.753 on the development data set and 0.742 on the validation data set. By multivariate logistic regression analysis, we identified 14 risk factors and 2 protective factors of readmission that have never been reported.

CONCLUSIONS

The performance of our model is better than that of the most widely used models in US health care settings. This model can help clinicians identify readmission risk at the early stage of hospitalization so that they can pay extra attention during the care process of high-risk patients. The 14 novel risk factors and 2 novel protective factors can aid understanding of the factors associated with readmission.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3