BACKGROUND
Despite efforts to improve patient outcomes, major morbidity and mortality remain common after surgery. Health information technologies that provide decision support for clinicians might improve perioperative and postoperative patient care. Evaluating the usability of these technologies and barriers to their implementation can facilitate their acceptance within health systems.
OBJECTIVE
This manuscript describes usability testing and refinement of an innovative telemedicine-based clinical support system, the Anesthesiology Control Tower (ACT). It also reports stakeholders’ perceptions of the barriers and facilitators to implementation of the intervention.
METHODS
Three phases of testing were conducted in an iterative manner. Phase 1 testing employed a think-aloud protocol analysis to identify surface-level usability problems with individual software components of the ACT and its structure. Phase 2 testing involved an extended qualitative and quantitative real-world usability analysis. Phase 3 sought to identify major barriers and facilitators to implementation of the ACT through semistructured interviews with key stakeholders.
RESULTS
Phase 1 and phase 2 usability testing sessions identified numerous usability problems with the software components of the ACT. The ACT platform was revised in seven iterations in response to these usability concerns. Initial satisfaction with the ACT, as measured by standardized instruments, was below commonly accepted cutoffs for these measures. Satisfaction improved to acceptable levels over the course of revision and testing. A number of barriers to implementation were also identified and addressed during the refinement of the ACT intervention.
CONCLUSIONS
The ACT model can improve the standard of perioperative anesthesia care. Through our thorough and iterative usability testing process and stakeholder assessment of barriers and facilitators, we enhanced the acceptability of this novel technology and improved our ability to implement this innovation into routine practice.
INTERNATIONAL REGISTERED REPOR
RR2-10.1186/s40814-018-0233-4