Weight loss trajectories and related factors in a 16-week mobile obesity intervention: A retrospective observational study (Preprint)

Author:

Kim Ho HeonORCID,Kim Young InORCID,Michaelides AndreasORCID,Park Yu RangORCID

Abstract

BACKGROUND

In obesity management, whether patients lose 5% or more of their initial weight is a critical factor in their clinical outcome. However, evaluations that only take this approach cannot identify and distinguish between individuals whose weight change varies and those who steadily lose weight. Evaluation of weight loss considering the volatility of weight change through a mobile-based intervention for obesity can facilitate the understanding of individuals’ behavior and weight changes from a longitudinal perspective.

OBJECTIVE

With machine learning approach, we examined weight loss trajectories and explored the factors related to behavioral and app usage characteristics that induce weight loss.

METHODS

We used the lifelog data of 19,784 individuals who enrolled in a 16-week obesity management program on the healthcare app Noom in the US during August 8, 2013 to August 8, 2019. We performed K-means clustering with dynamic time warping to cluster the weight loss time series and inspected the quality of clusters with the total sum of distance within the clusters. To identify the usage factors to determine clustering assignment, we longitudinally compared weekly usage statistics with effect size on a weekly basis.

RESULTS

Initial Body Mass Index (BMI) of participants was 33.9±5.9 kg/m2, and ultimately reached an average BMI of 32.0±5.7 kg/m2. In their weight log, 5 Clusters were identified: Cluster 1 (sharp decrease) showed a high proportion of weight reduction class between 10% and 15%—the highest among the five clusters (n=2,364/12,796, 18.9%)—followed by Cluster 2 (moderate decrease), Cluster 3 (increase), Cluster 4 (yoyo), Cluster 5 (other). In comparison between cluster 2 and cluster 4, although the effect size of difference in the average meal input adherence and average weight input adherence did not show a significant difference in the first week, it increased continuously for 7 weeks (Cohen’s d=0.408; 0.38).

CONCLUSIONS

With machine learning approach clustering shape-based timeseries similarity, this study identified 5 weight loss trajectories in mobile weight management app. Overall adherence and early adherence related to self-monitoring emerged as a potential predictor of these trajectories.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3