The COVID-19 Infodemic (Preprint)

Author:

DESAI TEJASORCID,Conjeevaram Arvind

Abstract

BACKGROUND

In Situation Report #13 and 39 days before declaring COVID-19 a pandemic, the WHO declared a “COVID-19 infodemic”. The volume of coronavirus tweets was far too great for one to find accurate or reliable information. Healthcare workers were flooded with “noise” which drowned the “signal” of valuable COVID-19 information. To combat the infodemic, physicians created healthcare-specific micro-communities to share scientific information with other providers.

OBJECTIVE

Our objective was to eliminate noise and elevate signal tweets related to COVID-19 and provide easy access to the most educational tweets for medical professionals who were searching for information.

METHODS

We analyzed the content of eight physician-created communities and categorized each message in one of five domains. We coded 1) an application programming interface to download tweets and their metadata in JavaScript Object Notation and 2) a reading algorithm using visual basic application in Excel to categorize the content. We superimposed the publication date of each tweet into a timeline of key pandemic events. Finally, we created NephTwitterArchive.com to help healthcare workers find COVID-19-related signal tweets when treating patients.

RESULTS

We collected 21071 tweets from the eight hashtags studied. Only 9051 tweets were considered signal: tweets categorized into both a domain and subdomain. There was a trend towards fewer signal tweets as the pandemic progressed, with a daily median of 22% (IQR 0-42%). The most popular subdomain in Prevention was PPE (2448 signal tweets). In Therapeutics, Hydroxychloroquine/chloroquine wwo Azithromycin and Mechanical Ventilation were the most popular subdomains. During the active Infodemic phase (Days 0 to 49), a total of 2021 searches were completed in NephTwitterArchive.com, which was a 26% increase from the same time period before the pandemic was declared (Days -50 to -1).

CONCLUSIONS

The COVID-19 Infodemic indicates that future endeavors must be undertaken to eliminate noise and elevate signal in all aspects of scientific discourse on Twitter. In the absence of any algorithm-based strategy, healthcare providers will be left with the nearly impossible task of manually finding high-quality tweets from amongst a tidal wave of noise.

CLINICALTRIAL

not applicable

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3