Re-engineering a Clinical Trial Management System Using Blockchain Technology: System Design, Development, and Case Studies (Preprint)

Author:

Zhuang YanORCID,Zhang LuxiaORCID,Gao XiyuanORCID,Shae Zon-YinORCID,Tsai Jeffrey J PORCID,Li PengfeiORCID,Shyu Chi-RenORCID

Abstract

BACKGROUND

A clinical trial management system (CTMS) is a suite of specialized productivity tools that manage clinical trial processes from study planning to closeout. Using CTMSs has shown remarkable benefits in delivering efficient, auditable, and visualizable clinical trials. However, the current CTMS market is fragmented, and most CTMSs fail to meet expectations because of their inability to support key functions, such as inconsistencies in data captured across multiple sites. Blockchain technology, an emerging distributed ledger technology, is considered to potentially provide a holistic solution to current CTMS challenges by using its unique features, such as transparency, traceability, immutability, and security.

OBJECTIVE

This study aimed to re-engineer the traditional CTMS by leveraging the unique properties of blockchain technology to create a secure, auditable, efficient, and generalizable CTMS.

METHODS

A comprehensive, blockchain-based CTMS that spans all stages of clinical trials, including a sharable trial master file system; a fast recruitment and simplified enrollment system; a timely, secure, and consistent electronic data capture system; a reproducible data analytics system; and an efficient, traceable payment and reimbursement system, was designed and implemented using the Quorum blockchain. Compared with traditional blockchain technologies, such as Ethereum, Quorum blockchain offers higher transaction throughput and lowers transaction latency. Case studies on each application of the CTMS were conducted to assess the feasibility, scalability, stability, and efficiency of the proposed blockchain-based CTMS.

RESULTS

A total of 21.6 million electronic data capture transactions were generated and successfully processed through blockchain, with an average of 335.4 transactions per second. Of the 6000 patients, 1145 were matched in 1.39 seconds using 10 recruitment criteria with an automated matching mechanism implemented by the smart contract. Key features, such as immutability, traceability, and stability, were also tested and empirically proven through case studies.

CONCLUSIONS

This study proposed a comprehensive blockchain-based CTMS that covers all stages of the clinical trial process. Compared with our previous research, the proposed system showed an overall better performance. Our system design, implementation, and case studies demonstrated the potential of blockchain technology as a potential solution to CTMS challenges and its ability to perform more health care tasks.

CLINICALTRIAL

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3