The Convolution Neural Network Combined with the HT Person Fit Statistic to Develop an APP for Detecting Dengue Fever in Children: Development and Usability Study (Preprint)

Author:

WEI CHIENORCID,Julie Chi Chow,Willy Chou

Abstract

UNSTRUCTURED

Backgrounds: Dengue fever (DF) is an important public health issue in Asia. However, the disease is extremely hard to detect using traditional dichotomous (i.e., absent vs. present) evaluations of symptoms. Convolution neural network (CNN), a well-established deep learning method, can improve prediction accuracy on account of its usage of a large number of parameters for modeling. Whether the HT person fit statistic can be combined with CNN to increase the prediction accuracy of the model and develop an application (APP) to detect DF in children remains unknown. Objectives: The aim of this study is to build a model for the automatic detection and classification of DF with symptoms to help patients, family members, and clinicians identify the disease at an early stage. Methods: We extracted 19 feature variables of DF-related symptoms from 177 pediatric patients (69 diagnosed with DF) using CNN to predict DF risk. The accuracy of two sets of characteristics (19 symptoms and four other variables, including person mean, standard deviation, and two HT-related statistics matched to DF+ and DF−) for predicting DF, were then compared. Data were separated into training and testing sets, and the former was used to predict the latter. We calculated the sensitivity (Sens), specificity (Spec), and area under the receiver operating characteristic curve (AUC) across studies for comparison. Results: We observed that (1) the 23-item model yields a higher accuracy rate (0.95) and AUC (0.94) than the 19-item model (accuracy = 0.92, AUC = 0.90) based on the 177-case training set; (2) the Sens values are almost higher than the corresponding Spec values (90% in 10 scenarios) for predicting DF; (3) the Sens and Spec values of the 23-item model are consistently higher than those of the 19-item model. An APP was subsequently designed to detect DF in children. Conclusion: The 23-item model yielded higher accuracy rates (0.95) and AUC (0.94) than the 19-item model (accuracy = 0.92, AUC = 0.90). An APP could be developed to help patients, family members, and clinicians discriminate DF from other febrile illnesses at an early stage.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3