Technological Interventions for Medication Adherence in Adult Mental Health and Substance Use Disorders: A Systematic Review (Preprint)

Author:

Steinkamp Jackson MORCID,Goldblatt NathanielORCID,Borodovsky Jacob TORCID,LaVertu AmyORCID,Kronish Ian MORCID,Marsch Lisa AORCID,Schuman-Olivier ZevORCID

Abstract

BACKGROUND

Medication adherence is critical to the effectiveness of psychopharmacologic therapy. Psychiatric disorders present special adherence considerations, notably an altered capacity for decision making and the increased street value of controlled substances. A wide range of interventions designed to improve adherence in mental health and substance use disorders have been studied; recently, many have incorporated information technology (eg, mobile phone apps, electronic pill dispensers, and telehealth). Many intervention components have been studied across different disorders. Furthermore, many interventions incorporate multiple components, making it difficult to evaluate the effect of individual components in isolation.

OBJECTIVE

The aim of this study was to conduct a systematic scoping review to develop a literature-driven, transdiagnostic taxonomic framework of technology-based medication adherence intervention and measurement components used in mental health and substance use disorders.

METHODS

This review was conducted based on a published protocol (PROSPERO: CRD42018067902) in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses systematic review guidelines. We searched 7 electronic databases: MEDLINE, EMBASE, PsycINFO, the Cochrane Central Register of Controlled Trials, Web of Science, Engineering Village, and ClinicalTrials.gov from January 2000 to September 2018. Overall, 2 reviewers independently conducted title and abstract screens, full-text screens, and data extraction. We included all studies that evaluate populations or individuals with a mental health or substance use disorder and contain at least 1 technology-delivered component (eg, website, mobile phone app, biosensor, or algorithm) designed to improve medication adherence or the measurement thereof. Given the wide variety of studied interventions, populations, and outcomes, we did not conduct a risk of bias assessment or quantitative meta-analysis. We developed a taxonomic framework for intervention classification and applied it to multicomponent interventions across mental health disorders.

RESULTS

The initial search identified 21,749 results; after screening, 127 included studies remained (Cohen kappa: 0.8, 95% CI 0.72-0.87). Major intervention component categories include reminders, support messages, social support engagement, care team contact capabilities, data feedback, psychoeducation, adherence-based psychotherapy, remote care delivery, secure medication storage, and contingency management. Adherence measurement components include self-reports, remote direct visualization, fully automated computer vision algorithms, biosensors, smart pill bottles, ingestible sensors, pill counts, and utilization measures. Intervention modalities include short messaging service, mobile phone apps, websites, and interactive voice response. We provide graphical representations of intervention component categories and an element-wise breakdown of multicomponent interventions.

CONCLUSIONS

Many technology-based medication adherence and monitoring interventions have been studied across psychiatric disease contexts. Interventions that are useful in one psychiatric disorder may be useful in other disorders, and further research is necessary to elucidate the specific effects of individual intervention components. Our framework is directly developed from the substance use disorder and mental health treatment literature and allows for transdiagnostic comparisons and an organized conceptual mapping of interventions.

Publisher

JMIR Publications Inc.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3