Clinical Advice by Voice Assistants on Postpartum Depression: Cross-Sectional Investigation Using Apple Siri, Amazon Alexa, Google Assistant, and Microsoft Cortana (Preprint)

Author:

Yang SamuelORCID,Lee JenniferORCID,Sezgin EmreORCID,Bridge JeffreyORCID,Lin SimonORCID

Abstract

BACKGROUND

A voice assistant (VA) is inanimate audio-interfaced software augmented with artificial intelligence, capable of 2-way dialogue, and increasingly used to access health care advice. Postpartum depression (PPD) is a common perinatal mood disorder with an annual estimated cost of $14.2 billion. Only a small percentage of PPD patients seek care due to lack of screening and insufficient knowledge of the disease, and this is, therefore, a prime candidate for a VA-based digital health intervention.

OBJECTIVE

In order to understand the capability of VAs, our aim was to assess VA responses to PPD questions in terms of accuracy, verbal response, and clinically appropriate advice given.

METHODS

This cross-sectional study examined four VAs (Apple Siri, Amazon Alexa, Google Assistant, and Microsoft Cortana) installed on two mobile devices in early 2020. We posed 14 questions to each VA that were retrieved from the American College of Obstetricians and Gynecologists (ACOG) patient-focused Frequently Asked Questions (FAQ) on PPD. We scored the VA responses according to accuracy of speech recognition, presence of a verbal response, and clinically appropriate advice in accordance with ACOG FAQ, which were assessed by two board-certified physicians.

RESULTS

Accurate recognition of the query ranged from 79% to 100%. Verbal response ranged from 36% to 79%. If no verbal response was given, queries were treated like a web search between 33% and 89% of the time. Clinically appropriate advice given by VA ranged from 14% to 29%. We compared the category proportions using the Fisher exact test. No single VA statistically outperformed other VAs in the three performance categories. Additional observations showed that two VAs (Google Assistant and Microsoft Cortana) included advertisements in their responses.

CONCLUSIONS

While the best performing VA gave clinically appropriate advice to 29% of the PPD questions, all four VAs taken together achieved 64% clinically appropriate advice. All four VAs performed well in accurately recognizing a PPD query, but no VA achieved even a 30% threshold for providing clinically appropriate PPD information. Technology companies and clinical organizations should partner to improve guidance, screen patients for mental health disorders, and educate patients on potential treatment.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3