Novel Analgesic Index for Postoperative Pain Assessment Based on a Photoplethysmographic Spectrogram and Convolutional Neural Network: Observational Study (Preprint)

Author:

Choi Byung-MoonORCID,Yim Ji YeonORCID,Shin HangsikORCID,Noh GyujeongORCID

Abstract

BACKGROUND

Although commercially available analgesic indices based on biosignal processing have been used to quantify nociception during general anesthesia, their performance is low in conscious patients. Therefore, there is a need to develop a new analgesic index with improved performance to quantify postoperative pain in conscious patients.

OBJECTIVE

This study aimed to develop a new analgesic index using photoplethysmogram (PPG) spectrograms and a convolutional neural network (CNN) to objectively assess pain in conscious patients.

METHODS

PPGs were obtained from a group of surgical patients for 6 minutes both in the absence (preoperatively) and in the presence (postoperatively) of pain. Then, the PPG data of the latter 5 minutes were used for analysis. Based on the PPGs and a CNN, we developed a spectrogram–CNN index for pain assessment. The area under the curve (AUC) of the receiver-operating characteristic curve was measured to evaluate the performance of the 2 indices.

RESULTS

PPGs from 100 patients were used to develop the spectrogram–CNN index. When there was pain, the mean (95% CI) spectrogram–CNN index value increased significantly—baseline: 28.5 (24.2-30.7) versus recovery area: 65.7 (60.5-68.3); <i>P</i>&lt;.01. The AUC and balanced accuracy were 0.76 and 71.4%, respectively. The spectrogram–CNN index cutoff value for detecting pain was 48, with a sensitivity of 68.3% and specificity of 73.8%.

CONCLUSIONS

Although there were limitations to the study design, we confirmed that the spectrogram–CNN index can efficiently detect postoperative pain in conscious patients. Further studies are required to assess the spectrogram–CNN index’s feasibility and prevent overfitting to various populations, including patients under general anesthesia.

CLINICALTRIAL

Clinical Research Information Service KCT0002080; https://cris.nih.go.kr/cris/search/search_result_st01.jsp?seq=6638

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3