BACKGROUND
Although commercially available analgesic indices based on biosignal processing have been used to quantify nociception during general anesthesia, their performance is low in conscious patients. Therefore, there is a need to develop a new analgesic index with improved performance to quantify postoperative pain in conscious patients.
OBJECTIVE
This study aimed to develop a new analgesic index using photoplethysmogram (PPG) spectrograms and a convolutional neural network (CNN) to objectively assess pain in conscious patients.
METHODS
PPGs were obtained from a group of surgical patients for 6 minutes both in the absence (preoperatively) and in the presence (postoperatively) of pain. Then, the PPG data of the latter 5 minutes were used for analysis. Based on the PPGs and a CNN, we developed a spectrogram–CNN index for pain assessment. The area under the curve (AUC) of the receiver-operating characteristic curve was measured to evaluate the performance of the 2 indices.
RESULTS
PPGs from 100 patients were used to develop the spectrogram–CNN index. When there was pain, the mean (95% CI) spectrogram–CNN index value increased significantly—baseline: 28.5 (24.2-30.7) versus recovery area: 65.7 (60.5-68.3); <i>P</i><.01. The AUC and balanced accuracy were 0.76 and 71.4%, respectively. The spectrogram–CNN index cutoff value for detecting pain was 48, with a sensitivity of 68.3% and specificity of 73.8%.
CONCLUSIONS
Although there were limitations to the study design, we confirmed that the spectrogram–CNN index can efficiently detect postoperative pain in conscious patients. Further studies are required to assess the spectrogram–CNN index’s feasibility and prevent overfitting to various populations, including patients under general anesthesia.
CLINICALTRIAL
Clinical Research Information Service KCT0002080; https://cris.nih.go.kr/cris/search/search_result_st01.jsp?seq=6638