Shortcomings in the Evaluation of Blood Glucose Forecasting (Preprint)

Author:

Lee Jung Min,Pop-Busui Rodica,Lee Joyce Mee Kyoung,Fleischer Jesper,Wiens Jenna

Abstract

UNSTRUCTURED

Most artificial pancreas systems require a blood glucose (BG) forecasting model that captures the dynamics of the human metabolic system. Machine learning researchers train these models by optimizing for metrics such as root mean squared error (RMSE). However, we found that when combined with a standard controller, models that minimize RMSE do not necessarily yield a higher percent time-in-range (%TIR). We compared the predictive accuracy and control performance of two forecasters: a machine learning-based model that minimizes RMSE (LSTM) and a rule-based model (Loop). Despite achieving RMSE comparable to state-of-the-art (RMSE 15.24mg/dL at 30min), LSTM only achieved 24.35% (IQR 22.35-25.61) TIR. While Loop’s prediction accuracy was worse (RMSE 19.50mg/dL at 30min, p < 0.05), it achieved higher TIR: 34.20% (IQR 31.25-41.02). Thus, the standard approach to evaluating BG forecasters could lead to poor model selection with respect to improving closed-loop control.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3