Rehabilitation Exergames: Use of Motion Sensing and Machine Learning to Quantify Exercise Performance in Healthy Volunteers (Preprint)

Author:

Haghighi Osgouei RezaORCID,Soulsby DavidORCID,Bello FernandoORCID

Abstract

BACKGROUND

Performing physiotherapy exercises in front of a physiotherapist yields qualitative assessment notes and immediate feedback. However, practicing the exercises at home lacks feedback on how well patients are performing the prescribed tasks. The absence of proper feedback might result in patients performing the exercises incorrectly, which could worsen their condition. We present an approach to generate performance scores to enable tracking the progress by both the patient at home and the physiotherapist in the clinic.

OBJECTIVE

This study aims to propose the use of 2 machine learning algorithms, dynamic time warping (DTW) and hidden Markov model (HMM), to quantitatively assess the patient’s performance with respect to a reference.

METHODS

Movement data were recorded using a motion sensor (Kinect V2), capable of detecting 25 joints in the human skeleton model, and were compared with those of a reference. A total of 16 participants were recruited to perform 4 different exercises: shoulder abduction, hip abduction, lunge, and sit-to-stand exercises. Their performance was compared with that of a physiotherapist as a reference.

RESULTS

Both algorithms showed a similar trend in assessing participant performance. However, their sensitivity levels were different. Although DTW was more sensitive to small changes, HMM captured a general view of the performance, being less sensitive to the details.

CONCLUSIONS

The chosen algorithms demonstrated their capacity to objectively assess the performance of physical therapy. HMM may be more suitable in the early stages of a physiotherapy program to capture and report general performance, whereas DTW could be used later to focus on the details. The scores enable the patient to monitor their daily performance. They can also be reported back to the physiotherapist to track and assess patient progress, provide feedback, and adjust the exercise program if needed.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3