Using Natural Language Processing and Machine Learning to Preoperatively Predict Lymph Node Metastasis for Non–Small Cell Lung Cancer With Electronic Medical Records: Development and Validation Study (Preprint)

Author:

Hu DanqingORCID,Li ShaoleiORCID,Zhang HuanyaoORCID,Wu NanORCID,Lu XudongORCID

Abstract

BACKGROUND

Lymph node metastasis (LNM) is critical for treatment decision making of patients with resectable non–small cell lung cancer, but it is difficult to precisely diagnose preoperatively. Electronic medical records (EMRs) contain a large volume of valuable information about LNM, but some key information is recorded in free text, which hinders its secondary use.

OBJECTIVE

This study aims to develop LNM prediction models based on EMRs using natural language processing (NLP) and machine learning algorithms.

METHODS

We developed a multiturn question answering NLP model to extract features about the primary tumor and lymph nodes from computed tomography (CT) reports. We then combined these features with other structured clinical characteristics to develop LNM prediction models using machine learning algorithms. We conducted extensive experiments to explore the effectiveness of the predictive models and compared them with size criteria based on CT image findings (the maximum short axis diameter of lymph node >10 mm was regarded as a metastatic node) and clinician’s evaluation. Since the NLP model may extract features with mistakes, we also calculated the concordance correlation between the predicted probabilities of models using NLP-extracted features and gold standard features to explore the influence of NLP-driven automatic extraction.

RESULTS

Experimental results show that the random forest models achieved the best performances with 0.792 area under the receiver operating characteristic curve (AUC) value and 0.456 average precision (AP) value for pN2 LNM prediction and 0.768 AUC value and 0.524 AP value for pN1&N2 LNM prediction. And all machine learning models outperformed the size criteria and clinician’s evaluation. The concordance correlation between the random forest models using NLP-extracted features and gold standard features is 0.950 and improved to 0.984 when the top 5 important NLP-extracted features were replaced with gold standard features.

CONCLUSIONS

The LNM models developed can achieve competitive performance using only limited EMR data such as CT reports and tumor markers in comparison with the clinician’s evaluation. The multiturn question answering NLP model can extract features effectively to support the development of LNM prediction models, which may facilitate the clinical application of predictive models.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3