Predictors of COVID-19 From a Statewide Digital Symptom and Risk Assessment Tool: Cross-Sectional Study (Preprint)

Author:

Schooley Benjamin LORCID,Ahmed AbdulazizORCID,Maxwell JustineORCID,Feldman Sue SORCID

Abstract

BACKGROUND

Some of the most vexing issues with the COVID-19 pandemic were the inability of facilities and events, such as schools and work areas, to track symptoms to mitigate the spread of the disease. To combat these challenges, many turned to the implementation of technology. Technology solutions to mitigate repercussions of the COVID-19 pandemic include tools that provide guidelines and interfaces to influence behavior, reduce exposure to the disease, and enable policy-driven avenues to return to a sense of normalcy. This paper presents the implementation and early evaluation of a return-to-work COVID-19 symptom and risk assessment tool. The system was implemented across 34 institutions of health and education in Alabama, including more than 174,000 users with over 4 million total uses and more than 86,000 reports of exposure risk between July 2020 and April 2021.

OBJECTIVE

This study aimed to explore the usage of technology, specifically a COVID-19 symptom and risk assessment tool, to mitigate exposure to COVID-19 within public spaces. More specifically, the objective was to assess the relationship between user-reported symptoms and exposure via a mobile health app, with confirmed COVID-19 cases reported by the Alabama Department of Public Health (ADPH).

METHODS

This cross-sectional study evaluated the relationship between confirmed COVID-19 cases and user-reported COVID-19 symptoms and exposure reported through the Healthcheck web-based mobile application. A dependent variable for confirmed COVID-19 cases in Alabama was obtained from ADPH. Independent variables (ie, health symptoms and exposure) were collected through Healthcheck survey data and included measures assessing COVID-19–related risk levels and symptoms. Multiple linear regression was used to examine the relationship between ADPH-confirmed diagnosis of COVID-19 and self-reported health symptoms and exposure via Healthcheck that were analyzed across the state population but not connected at the individual patient level.

RESULTS

Regression analysis showed that the self-reported information collected by Healthcheck significantly affects the number of COVID-19–confirmed cases. The results demonstrate that the average number of confirmed COVID-19 cases increased by 5 (high risk: β=5.10; <i>P</i>=.001), decreased by 24 (sore throat: β=−24.03; <i>P</i>=.001), and increased by 21 (nausea or vomiting: β=21.67; <i>P</i>=.02) per day for every additional self-report of symptoms by Healthcheck survey respondents. Congestion or runny nose was the most frequently reported symptom. Sore throat, low risk, high risk, nausea, or vomiting were all statistically significant factors.

CONCLUSIONS

The use of technology allowed organizations to remotely track a population as it is related to COVID-19. Healthcheck was a platform that aided in symptom tracking, risk assessment, and evaluation of status for admitting individuals into public spaces for people in the Alabama area. The confirmed relationship between symptom and exposure self-reporting using an app and population-wide confirmed cases suggests that further investigation is needed to determine the opportunity for such apps to mitigate disease spread at a community and individual level.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3