ICD10Net: An Artificial Intelligence Algorithm with Medical Background Conducts ICD-10-CM Coding Task with Outstanding Performance (Preprint)

Author:

Lin ChinORCID,Lou Yu-ShengORCID,Lee Chia-ChengORCID,Hsu Chia-JungORCID,Wu Ding-ChungORCID,Wang Mei-ChuenORCID,Fang Wen-HuiORCID

Abstract

BACKGROUND

An artificial intelligence-based algorithm has shown a powerful ability for coding the International Classification of Diseases, Tenth Revision, Clinical Modification (ICD-10-CM) in discharge notes. However, its performance still requires improvement compared with human experts. The major disadvantage of the previous algorithm is its lack of understanding medical terminologies.

OBJECTIVE

We propose some methods based on human-learning process and conduct a series of experiments to validate their improvements.

METHODS

We compared two data sources for training the word-embedding model: English Wikipedia and PubMed journal abstracts. Moreover, the fixed, changeable, and double-channel embedding tables were used to test their performance. Some additional tricks were also applied to improve accuracy. We used these methods to identify the three-chapter-level ICD-10-CM diagnosis codes in a set of discharge notes. Subsequently, 94,483-labeled discharge notes from June 1, 2015 to June 30, 2017 were used from the Tri-Service General Hospital in Taipei, Taiwan. To evaluate performance, 24,762 discharge notes from July 1, 2017 to December 31, 2017, from the same hospital were used. Moreover, 74,324 additional discharge notes collected from other seven hospitals were also tested. The F-measure is the major global measure of effectiveness.

RESULTS

In understanding medical terminologies, the PubMed-embedding model (Pearson correlation = 0.60/0.57) shows a better performance compared with the Wikipedia-embedding model (Pearson correlation = 0.35/0.31). In the accuracy of ICD-10-CM coding, the changeable model both used the PubMed- and Wikipedia-embedding model has the highest testing mean F-measure (0.7311 and 0.6639 in Tri-Service General Hospital and other seven hospitals, respectively). Moreover, a proposed method called a hybrid sampling method, an augmentation trick to avoid algorithms identifying negative terms, was found to additionally improve the model performance.

CONCLUSIONS

The proposed model architecture and training method is named as ICD10Net, which is the first expert level model practically applied to daily work. This model can also be applied in unstructured information extraction from free-text medical writing. We have developed a web app to demonstrate our work (https://linchin.ndmctsgh.edu.tw/app/ICD10/).

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3