Open-source Longitudinal Sleep Analysis From Accelerometer Data (DPSleep): Algorithm Development and Validation (Preprint)

Author:

Rahimi-Eichi HabiballahORCID,Coombs III GarthORCID,Vidal Bustamante Constanza MORCID,Onnela Jukka-PekkaORCID,Baker Justin TORCID,Buckner Randy LORCID

Abstract

BACKGROUND

Wearable devices are now widely available to collect continuous objective behavioral data from individuals and to measure sleep.

OBJECTIVE

This study aims to introduce a pipeline to infer sleep onset, duration, and quality from raw accelerometer data and then quantify the relationships between derived sleep metrics and other variables of interest.

METHODS

The pipeline released here for the deep phenotyping of sleep, as the <i>DPSleep</i> software package, uses a stepwise algorithm to detect missing data; within-individual, minute-based, spectral power percentiles of activity; and iterative, forward-and-backward–sliding windows to estimate the major Sleep Episode onset and offset. Software modules allow for manual quality control adjustment of the derived sleep features and correction for time zone changes. In this paper, we have illustrated the pipeline with data from participants studied for more than 200 days each.

RESULTS

Actigraphy-based measures of sleep duration were associated with self-reported sleep quality ratings. Simultaneous measures of smartphone use and GPS location data support the validity of the sleep timing inferences and reveal how phone measures of sleep timing can differ from actigraphy data.

CONCLUSIONS

We discuss the use of DPSleep in relation to other available sleep estimation approaches and provide example use cases that include multi-dimensional, deep longitudinal phenotyping, extended measurement of dynamics associated with mental illness, and the possibility of combining wearable actigraphy and personal electronic device data (eg, smartphones and tablets) to measure individual differences across a wide range of behavioral variations in health and disease. A new open-source pipeline for deep phenotyping of sleep, DPSleep, analyzes raw accelerometer data from wearable devices and estimates sleep onset and offset while allowing for manual quality control adjustments.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3