Development of a Prognostic App (iCanPredict) to Predict Survival for Chinese Women With Breast Cancer: Retrospective Study (Preprint)

Author:

Ma ZhuoORCID,Huang SijiaORCID,Wu XiaoqingORCID,Huang YinyingORCID,Chan Sally Wai-ChiORCID,Lin YilanORCID,Zheng XujuanORCID,Zhu JieminORCID

Abstract

BACKGROUND

Accurate prediction of survival is crucial for both physicians and women with breast cancer to enable clinical decision making on appropriate treatments. The currently available survival prediction tools were developed based on demographic and clinical data obtained from specific populations and may underestimate or overestimate the survival of women with breast cancer in China.

OBJECTIVE

This study aims to develop and validate a prognostic app to predict the overall survival of women with breast cancer in China.

METHODS

Nine-year (January 2009-December 2017) clinical data of women with breast cancer who received surgery and adjuvant therapy from 2 hospitals in Xiamen were collected and matched against the death data from the Xiamen Center of Disease Control and Prevention. All samples were randomly divided (7:3 ratio) into a training set for model construction and a test set for model external validation. Multivariable Cox regression analysis was used to construct a survival prediction model. The model performance was evaluated by receiver operating characteristic (ROC) curve and Brier score. Finally, by running the survival prediction model in the app background thread, the prognostic app, called iCanPredict, was developed for women with breast cancer in China.

RESULTS

A total of 1592 samples were included for data analysis. The training set comprised 1114 individuals and the test set comprised 478 individuals. Age at diagnosis, clinical stage, molecular classification, operative type, axillary lymph node dissection, chemotherapy, and endocrine therapy were incorporated into the model, where age at diagnosis (hazard ratio [HR] 1.031, 95% CI 1.011-1.051; <i>P</i>=.002), clinical stage (HR 3.044, 95% CI 2.347-3.928; <i>P</i>&lt;.001), and endocrine therapy (HR 0.592, 95% CI 0.384-0.914; <i>P</i>=.02) significantly influenced the survival of women with breast cancer. The operative type (<i>P</i>=.81) and the other 4 variables (molecular classification [<i>P</i>=.91], breast reconstruction [<i>P</i>=.36], axillary lymph node dissection [<i>P</i>=.32], and chemotherapy [<i>P</i>=.84]) were not significant. The ROC curve of the training set showed that the model exhibited good discrimination for predicting 1- (area under the curve [AUC] 0.802, 95% CI 0.713-0.892), 5- (AUC 0.813, 95% CI 0.760-0.865), and 10-year (AUC 0.740, 95% CI 0.672-0.808) overall survival. The Brier scores at 1, 5, and 10 years after diagnosis were 0.005, 0.055, and 0.103 in the training set, respectively, and were less than 0.25, indicating good predictive ability. The test set externally validated model discrimination and calibration. In the iCanPredict app, when physicians or women input women’s clinical information and their choice of surgery and adjuvant therapy, the corresponding 10-year survival prediction will be presented.

CONCLUSIONS

This survival prediction model provided good model discrimination and calibration. iCanPredict is the first tool of its kind in China to provide survival predictions to women with breast cancer. iCanPredict will increase women’s awareness of the similar survival rate of different surgeries and the importance of adherence to endocrine therapy, ultimately helping women to make informed decisions regarding treatment for breast cancer.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3