Improving Prediction of Survival for Extremely Premature Infants Born at 23 to 29 Weeks Gestational Age in the Neonatal Intensive Care Unit: Development and Evaluation of Machine Learning Models (Preprint)

Author:

Li AngieORCID,Mullin SarahORCID,Elkin Peter LORCID

Abstract

BACKGROUND

Infants born at extremely preterm gestational ages are typically admitted to the neonatal intensive care unit (NICU) after initial resuscitation. The subsequent hospital course can be highly variable, and despite counseling aided by available risk calculators, there are significant challenges with shared decision-making regarding life support and transition to end-of-life care. Improving predictive models can help providers and families navigate these unique challenges.

OBJECTIVE

Machine learning methods have previously demonstrated added predictive value for determining intensive care unit outcomes, and their use allows consideration of a greater number of factors that potentially influence newborn outcomes, such as maternal characteristics. Machine learning–based models were analyzed for their ability to predict the survival of extremely preterm neonates at initial admission.

METHODS

Maternal and newborn information was extracted from the health records of infants born between 23 and 29 weeks of gestation in the Medical Information Mart for Intensive Care III (MIMIC-III) critical care database. Applicable machine learning models predicting survival during the initial NICU admission were developed and compared. The same type of model was also examined using only features that would be available prepartum for the purpose of survival prediction prior to an anticipated preterm birth. Features most correlated with the predicted outcome were determined when possible for each model.

RESULTS

Of included patients, 37 of 459 (8.1%) expired. The resulting random forest model showed higher predictive performance than the frequently used Score for Neonatal Acute Physiology With Perinatal Extension II (SNAPPE-II) NICU model when considering extremely preterm infants of very low birth weight. Several other machine learning models were found to have good performance but did not show a statistically significant difference from previously available models in this study. Feature importance varied by model, and those of greater importance included gestational age; birth weight; initial oxygenation level; elements of the APGAR (appearance, pulse, grimace, activity, and respiration) score; and amount of blood pressure support. Important prepartum features also included maternal age, steroid administration, and the presence of pregnancy complications.

CONCLUSIONS

Machine learning methods have the potential to provide robust prediction of survival in the context of extremely preterm births and allow for consideration of additional factors such as maternal clinical and socioeconomic information. Evaluation of larger, more diverse data sets may provide additional clarity on comparative performance.

CLINICALTRIAL

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3