BACKGROUND
A pressure ulcer (PU) is a localized cutaneous injury caused by pressure or shear, which usually occurs in the region of a bony prominence. PUs are common in hospitalized patients and cause complications including infection.
OBJECTIVE
This study aimed to build a recurrent neural network-based algorithm to predict PUs 24 hours before their occurrence.
METHODS
This study analyzed a freely accessible intensive care unit (ICU) dataset, MIMIC- III. Deep learning and machine learning algorithms including long short-term memory (LSTM), multilayer perceptron (MLP), and XGBoost were applied to 37 dynamic features (including the Braden scale, vital signs and laboratory results, and interventions to reduce the risk of PUs) and 35 static features (including the length of time spent in the ICU, demographics, and comorbidities). Their outcomes were compared in terms of the area under the receiver operating characteristic (AUROC) and the area under the precision-recall curve (AUPRC).
RESULTS
A total of 1,048 cases of PUs (10.0%) and 9,402 controls (90.0%) without PUs satisfied the inclusion criteria for analysis. The LSTM + MLP model (AUROC: 0.7929 ± 0.0095, AUPRC: 0.4819 ± 0.0109) outperformed the other models, namely: MLP model (AUROC: 0.7777 ± 0.0083, AUPRC: 0.4527 ± 0.0195) and XGBoost (AUROC: 0.7465 ± 0.0087, AUPRC: 0.4052 ± 0.0087). Various features, including the length of time spent in the ICU, Glasgow coma scale, and the Braden scale, contributed to the prediction model.
CONCLUSIONS
This study suggests that recurrent neural network-based algorithms such as LSTM can be applied to evaluate the risk of PUs in ICU patients.