Impact of altitude on COVID-19 aggregation infection in China: evidence from linkage of environmental factors, COVID-19, and genome diversity (Preprint)

Author:

Deji ZhuogaORCID,Tong YuantaoORCID,Zhang ZeyuORCID,Fang MengORCID,Crabble James CORCID,Wang YingORCID,Zhang XiaoyanORCID

Abstract

BACKGROUND

The novel coronavirus disease due to SARS-Cov-2 (COVID-19) has been declared as a global pandemic and is still ongoing worldwide. While based on the government report and genome diversity study, the overall COVID-19 mortality and infection cases are significantly low in high altitude place. Several factors which may effect the development tendency of COVID-19 were investigated. However, there is limited information on the evidence of low infection cases in altitude area, and how underlying biological mechanism effect the aggregation infection of COVID-19 in altitude area of China.

OBJECTIVE

This study is aiming to investigate the impacts of altitude on COVID-19 aggregation infection in China by analyzing the correlation between environmental factors with COVID-19 confirmed cases and viral mutations.

METHODS

We first examined the correlation between altitude and COVID-19 infection through linear regression, and further identified several major factors correlated to COVID-19 through text mining in the zero-shot model. Spearman correlation was conducted to analyze the correlation between selected meteorological factors and air quality with COVID-19 confirmed cases in high altitude regions of China. We further identified different virus mutations at both high and low altitudes, and the relationship between our environmental factors and mutation frequency using the same correlation technique.

RESULTS

The linear regression analysis revealed a negative correlation between altitude and COVID-19 confirmed case in China. The Spearman correlation analysis indicated that the average temperature, sun hours, UV index, wind speed and average concentration of NO2 were negatively correlated to daily new confirmed cases at high altitude regions in China, while air pressure, average concentration of PM2.5 were positively correlated. Further research of mutation diversity in low- and high-altitude groups showed lower genetic diversity among nucleotides for each SARS-CoV-2 genome (p < .001) and three open reading frames (ORFs) (p < .001) compared to 300 sequences of low altitude. Further correlation analysis investigated positive correlations between altitude, wind speed, atmospheric pressure with some key nonsynonymous mutations, and negative correlation with temperature, UV index, sun hours.

CONCLUSIONS

The characteristics of environmental factors including meteorology and air quality parameters largely reflect the evidence of low COVID-19 confirmed cases in high altitude region of China. Besides, environmental factors on virus mutation also adds knowledge of altitude impact on aggregation infection of COVID-19 and provides novel suggestions for preventive intervention.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3