Clinical Decision Support for Traumatic Brain Injury: Identifying a Framework for Practical Model-Based Intracranial Pressure Estimation at Multihour Timescales (Preprint)

Author:

Stroh J NORCID,Bennett Tellen DORCID,Kheyfets VitalyORCID,Albers DavidORCID

Abstract

BACKGROUND

The clinical mitigation of intracranial hypertension due to traumatic brain injury requires timely knowledge of intracranial pressure to avoid secondary injury or death. Noninvasive intracranial pressure (nICP) estimation that operates sufficiently fast at multihour timescales and requires only common patient measurements is a desirable tool for clinical decision support and improving traumatic brain injury patient outcomes. However, existing model-based nICP estimation methods may be too slow or require data that are not easily obtained.

OBJECTIVE

This work considers short- and real-time nICP estimation at multihour timescales based on arterial blood pressure (ABP) to better inform the ongoing development of practical models with commonly available data.

METHODS

We assess and analyze the effects of two distinct pathways of model development, either by increasing physiological integration using a simple pressure estimation model, or by increasing physiological fidelity using a more complex model. Comparison of the model approaches is performed using a set of quantitative model validation criteria over hour-scale times applied to model nICP estimates in relation to observed ICP.

RESULTS

The simple fully coupled estimation scheme based on windowed regression outperforms a more complex nICP model with prescribed intracranial inflow when pulsatile ABP inflow conditions are provided. We also show that the simple estimation data requirements can be reduced to 1-minute averaged ABP summary data under generic waveform representation.

CONCLUSIONS

Stronger performance of the simple bidirectional model indicates that feedback between the systemic vascular network and nICP estimation scheme is crucial for modeling over long intervals. However, simple model reduction to ABP-only dependence limits its utility in cases involving other brain injuries such as ischemic stroke and subarachnoid hemorrhage. Additional methodologies and considerations needed to overcome these limitations are illustrated and discussed.

CLINICALTRIAL

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3