Patient and Public Acceptance of Digital Technologies in Health Care: Protocol for a Discrete Choice Experiment (Preprint)

Author:

Fischer Ann-KathrinORCID,Mühlbacher Axel CORCID

Abstract

BACKGROUND

Strokes pose a particular challenge to the health care system. Although stroke-related mortality has declined in recent decades, the absolute number of new strokes (incidence), stroke deaths, and survivors of stroke has increased. With the increasing need of neurorehabilitation and the decreasing number of professionals, innovations are needed to ensure adequate care. Digital technologies are increasingly used to meet patients’ unfilled needs during their patient journey. Patients must adhere to unfamiliar digital technologies to engage in health interventions. Therefore, the acceptance of the benefits and burdens of digital technologies in health interventions is a key factor in implementing these innovations.

OBJECTIVE

This study aims to describe the development of a discrete choice experiment (DCE) to weigh criteria that impact patient and public acceptance. Secondary study objectives are a benefit-burden assessment (estimation of the maximum acceptable burden of technical features and therapy-related characteristics for the patient or individual, eg, no human contact), overall comparison (assessment of the relative importance of attributes for comparing digital technologies), and adherence (identification of key attributes that influence patient adherence). The exploratory objectives include heterogeneity assessment and subgroup analysis. The methodological aims are to investigate the use of DCE.

METHODS

To obtain information on the criteria impacting acceptance, a DCE will be conducted including 7 attributes based on formative qualitative research. Patients with stroke (experimental group) and the general population (control group) are surveyed. The final instrument includes 6 best-best choice tasks in partial design. The experimental design is a fractional-factorial efficient Bayesian design (D-error). A conditional logit regression model and mixed logistic regression models will be used for analysis. To consider the heterogeneity of subgroups, a latent class analysis and an analysis of heteroscedasticity will be performed.

RESULTS

The literature review, qualitative preliminary study, survey development, and pretesting were completed. Data collection and analysis will be completed in the last quarter of 2023.

CONCLUSIONS

Our results will inform decision makers about patients’ and publics’ acceptance of digital technologies used in innovative interventions. The patient preference information will improve decisions regarding the development, adoption, and pricing of innovative interventions. The behavioral changes in the choice of digital intervention alternatives are observable and can therefore be statistically analyzed. They can be translated into preferences, which define the value. This study will investigate the influences on the acceptance of digital interventions and thus support decisions and future research.

INTERNATIONAL REGISTERED REPORT

DERR1-10.2196/46056

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3