Evaluating the Effect of Activity and Environment on Fall Risk in a Paradigm-Depending Laboratory Setting: Protocol for an Experimental Pilot Study (Preprint)

Author:

Sczuka Kim SarahORCID,Schneider MarcORCID,Schellenbach MichaelORCID,Kerse NgaireORCID,Becker ClemensORCID,Klenk JochenORCID

Abstract

BACKGROUND

Knowledge about the causal factors leading to falls is still limited, and fall prevention interventions urgently need to be more effective to limit the otherwise increasing burden caused by falls in older people. To identify individual fall risk, it is important to understand the complex interplay of fall-related factors. Although fall events are common, they are seldom observed, and fall reports are often biased. Due to the rapid development of wearable inertial sensors, an objective approach to capture fall events and the corresponding circumstances is provided.

OBJECTIVE

The aim of this work is to operationalize a prototypical dynamic fall risk model regarding 4 ecologically valid real-world scenarios (opening a door, slipping, tripping, and usage of public transportation). We hypothesize that individual fall risk is associated with an interplay of intrinsic risk factors, activity, and environmental factors that can be estimated by using data measured within a laboratory simulation setting.

METHODS

We will recruit 30 community-dwelling people aged 60 years or older. To identify several fall-related intrinsic fall risk factors, appropriate clinical assessments will be selected. The experimental setup is adaptable so that the level of fall risk for each activity and each environmental factor is adjustable. By different levels of difficulty, the effect on the risk of falling will be investigated. An 8-camera motion tracking system will be used to record absolute body motions and limits of stability. All laboratory experiments will also be recorded by inertial sensors (L5, dominant leg) and video camera. Logistic regression analyses will be used to model the association between risk factors and falls. Continuous fall risk will be modeled by generalized linear regression models using margin of stability as outcome parameter.

RESULTS

The results of this project will prove the concept and establish methods to further use the dynamic fall risk model. Recruitment and measurement initially began in October 2020 but were halted because of the COVID-19 pandemic. Recruitment and measurements recommenced in October 2022, and by February 2023, a total of 25 of the planned 30 subjects have been measured.

CONCLUSIONS

In the field of fall prevention, a more precise fall risk model will have a significant impact on research leading to more effective prevention approaches. Given the described burden related to falls and the high prevalence, considerable improvements in fall prevention will have a significant impact on individual quality of life and also on society in general by reducing institutionalization and health care costs. The setup will enable the analysis of fall events and their circumstances ecologically valid in a laboratory setting and thereby will provide important information to estimate the individual instantaneous fall risk.

INTERNATIONAL REGISTERED REPORT

DERR1-10.2196/46930

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3