The AI Will See You Now: Feasibility and Acceptability of a Conversational AI Medical Interviewing System (Preprint)

Author:

Hong GraceORCID,Smith MargaretORCID,Lin StevenORCID

Abstract

BACKGROUND

Primary care physicians (PCPs) are often limited in their ability to collect detailed medical histories from patients, which can lead to errors or delays in diagnosis. Recent advances in artificial intelligence (AI) show promise in augmenting current human-driven methods of collecting personal and family histories; however, such tools are largely unproven.

OBJECTIVE

The main aim of this pilot study was to evaluate the feasibility and acceptability of a conversational AI medical interviewing system among patients.

METHODS

The study was conducted among adult patients empaneled at a family medicine clinic within a large academic medical center in Northern California. Participants were asked to test an AI medical interviewing system, which uses a conversational avatar and chatbot to capture medical histories and identify patients with risk factors. After completing an interview with the AI system, participants completed a web-based survey inquiring about the performance of the system, the ease of using the system, and attitudes toward the system. Responses on a 7-point Likert scale were collected and evaluated using descriptive statistics.

RESULTS

A total of 20 patients with a mean age of 50 years completed an interview with the AI system, including 12 females (60%) and 8 males (40%); 11 were White (55%), 8 were Asian (40%), and 1 was Black (5%), and 19 had at least a bachelor’s degree (95%). Most participants agreed that using the system to collect histories could help their PCPs have a better understanding of their health (16/20, 80%) and help them stay healthy through identification of their health risks (14/20, 70%). Those who reported that the system was clear and understandable, and that they were able to learn it quickly, tended to be younger; those who reported that the tool could motivate them to share more comprehensive histories with their PCPs tended to be older.

CONCLUSIONS

In this feasibility and acceptability pilot of a conversational AI medical interviewing system, the majority of patients believed that it could help clinicians better understand their health and identify health risks; however, patients were split on the effort required to use the system, and whether AI should be used for medical interviewing. Our findings suggest areas for further research, such as understanding the user interface factors that influence ease of use and adoption, and the reasons behind patients’ attitudes toward AI-assisted history-taking.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3