Identification of Hypertension in Electronic Health Records Through Computable Phenotype Development and Validation for Use in Public Health Surveillance: Retrospective Study (Preprint)

Author:

Valvi NimishORCID,McFarlane TimothyORCID,Allen Katie SORCID,Gibson P JosephORCID,Dixon Brian EdwardORCID

Abstract

BACKGROUND

Electronic health record (EHR) systems are widely used in the United States to document care delivery and outcomes. Health information exchange (HIE) networks, which integrate EHR data from the various health care providers treating patients, are increasingly used to analyze population-level data. Existing methods for population health surveillance of essential hypertension by public health authorities may be complemented using EHR data from HIE networks to characterize disease burden at the community level.

OBJECTIVE

We aimed to derive and validate computable phenotypes (CPs) to estimate hypertension prevalence for population-based surveillance using an HIE network.

METHODS

Using existing data available from an HIE network, we developed 6 candidate CPs for essential (primary) hypertension in an adult population from a medium-sized Midwestern metropolitan area in the United States. A total of 2 independent clinician reviewers validated the phenotypes through a manual chart review of 150 randomly selected patient records. We assessed the precision of CPs by calculating sensitivity, specificity, positive predictive value (PPV), <i>F</i><sub>1</sub>-score, and validity of chart reviews using prevalence-adjusted bias-adjusted κ. We further used the most balanced CP to estimate the prevalence of hypertension in the population.

RESULTS

Among a cohort of 548,232 adults, 6 CPs produced PPVs ranging from 71% (95% CI 64.3%-76.9%) to 95.7% (95% CI 84.9%-98.9%). The <i>F</i><sub>1</sub>-score ranged from 0.40 to 0.91. The prevalence-adjusted bias-adjusted κ revealed a high percentage agreement of 0.88 for hypertension. Similarly, interrater agreement for individual phenotype determination demonstrated substantial agreement (range 0.70-0.88) for all 6 phenotypes examined. A phenotype based solely on diagnostic codes possessed reasonable performance (<i>F</i><sub>1</sub>-score=0.63; PPV=95.1%) but was imbalanced with low sensitivity (47.6%). The most balanced phenotype (<i>F</i><sub>1</sub>-score=0.91; PPV=83.5%) included diagnosis, blood pressure measurements, and medications and identified 210,764 (38.4%) individuals with hypertension during the study period (2014-2015).

CONCLUSIONS

We identified several high-performing phenotypes to identify essential hypertension prevalence for local public health surveillance using EHR data. Given the increasing availability of EHR systems in the United States and other nations, leveraging EHR data has the potential to enhance surveillance of chronic disease in health systems and communities. Yet given variability in performance, public health authorities will need to decide whether to seek optimal balance or declare a preference for algorithms that lean toward sensitivity or specificity to estimate population prevalence of disease.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3