The Depth Estimation and Visualization of Dermatological Lesions: A Novel Methodology (Preprint)

Author:

Parekh PranavORCID,Oyeleke Richard O.

Abstract

BACKGROUND

Thus far, considerable research has been focused on classifying a lesion as benign or malignant.

OBJECTIVE

To propose a novel methodology for the depth estimation and visualization of skin lesions.

METHODS

We start by doing the same using a CNN, followed by using Explainable AI (XAI) to localize the image features responsible for the CNN output. We apply computer graphics for depth estimation and developing the 3D structure of the lesion. Our novel method, called the red spot analysis, measures the degree of infection based on which a conical hologram is constructed. Physicians can study this hologram via Mixed Reality headsets.

RESULTS

The neural model achieves an accuracy of 85.61%. We successfully obtained 3D representations of lesion depth using the method stated above.

CONCLUSIONS

When we map the CNN outputs (benign or malignant) to the corresponding hologram, we observe that a malignant lesion has a higher concentration of red spots (infection) in the upper and deeper portions of the skin.

CLINICALTRIAL

We do not perform RCT for this study.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3