Smartphone-Detected Ambient Speech and Self-Reported Measures of Anxiety and Depression: Exploratory Observational Study (Preprint)

Author:

Di Matteo DanielORCID,Wang WendyORCID,Fotinos KathrynORCID,Lokuge SachinthyaORCID,Yu JuliaORCID,Sternat TiaORCID,Katzman Martin AORCID,Rose JonathanORCID

Abstract

BACKGROUND

The ability to objectively measure the severity of depression and anxiety disorders in a passive manner could have a profound impact on the way in which these disorders are diagnosed, assessed, and treated. Existing studies have demonstrated links between both depression and anxiety and the linguistic properties of words that people use to communicate. Smartphones offer the ability to passively and continuously detect spoken words to monitor and analyze the linguistic properties of speech produced by the speaker and other sources of ambient speech in their environment. The linguistic properties of automatically detected and recognized speech may be used to build objective severity measures of depression and anxiety.

OBJECTIVE

The aim of this study was to determine if the linguistic properties of words passively detected from environmental audio recorded using a participant’s smartphone can be used to find correlates of symptom severity of social anxiety disorder, generalized anxiety disorder, depression, and general impairment.

METHODS

An Android app was designed to collect periodic audiorecordings of participants’ environments and to detect English words using automatic speech recognition. Participants were recruited into a 2-week observational study. The app was installed on the participants’ personal smartphones to record and analyze audio. The participants also completed self-report severity measures of social anxiety disorder, generalized anxiety disorder, depression, and functional impairment. Words detected from audiorecordings were categorized, and correlations were measured between words counts in each category and the 4 self-report measures to determine if any categories could serve as correlates of social anxiety disorder, generalized anxiety disorder, depression, or general impairment.

RESULTS

The participants were 112 adults who resided in Canada from a nonclinical population; 86 participants yielded sufficient data for analysis. Correlations between word counts in 67 word categories and each of the 4 self-report measures revealed a strong relationship between the usage rates of death-related words and depressive symptoms (<i>r</i>=0.41, <i>P</i>&lt;.001). There were also interesting correlations between rates of word usage in the categories of reward-related words with depression (<i>r</i>=–0.22, <i>P</i>=.04) and generalized anxiety (<i>r</i>=–0.29, <i>P</i>=.007), and vision-related words with social anxiety (<i>r</i>=0.31, <i>P</i>=.003).

CONCLUSIONS

In this study, words automatically recognized from environmental audio were shown to contain a number of potential associations with severity of depression and anxiety. This work suggests that sparsely sampled audio could provide relevant insight into individuals’ mental health.

CLINICALTRIAL

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3