A pilot study of a machine-learning tool to assist in the diagnosis of hand arthritis (Preprint)

Author:

Reed Mark DalyORCID,Le Souef Timothy James,Rampono Elliot

Abstract

BACKGROUND

Arthritis is a common condition, which frequently involves the hands. Patients with inflammatory arthritis have been shown to experience significant delays in diagnosis.

OBJECTIVE

We sought to develop and test a screening tool combining an image of a patient’s hands, a short series of questions, and a single examination technique, to determine the most likely diagnosis in a patient presenting with hand arthritis. Machine learning techniques were used to develop separate algorithms for each component, which were combined to produce a diagnosis.

METHODS

280 consecutive new patients presenting to a Rheumatology practice with hand arthritis were enrolled. Each patient completed a 9-part questionnaire, had photographs taken of each hand, and had a single examination result recorded. The Rheumatologist diagnosis was recorded following a 45-minute consultation. The photograph algorithm was developed from a library of 1000 images, and machine learning techniques were applied to the questionnaire results, training several models against the diagnosis from the Rheumatologist.

RESULTS

The combined algorithms in this study were able to predict inflammatory arthritis with an accuracy, precision, recall and specificity of 96·8%, 97·2%, 98·6% and 90·5% respectively. Similar results were found when inflammatory arthritis was subclassified into rheumatoid arthritis and psoriatic arthritis. The corresponding figures for osteoarthritis were 79·6%, 85·9%, 61·9% and 92·6%.

CONCLUSIONS

This study demonstrates a novel application of a combined image-processing and a patient questionnaire with applied machine-learning methods, to facilitate the diagnosis of patients presenting with hand arthritis. Preliminary results are encouraging for the application of such techniques in clinical practice.

CLINICALTRIAL

Not applicable.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3