Prediction Model of Osteonecrosis of the Femoral Head After Femoral Neck Fracture: Machine Learning–Based Development and Validation Study (Preprint)

Author:

Wang HuanORCID,Wu WeiORCID,Han ChunxiaORCID,Zheng JiaqiORCID,Cai XinyuORCID,Chang ShiminORCID,Shi JunlongORCID,Xu NanORCID,Ai ZishengORCID

Abstract

BACKGROUND

The absolute number of femoral neck fractures (FNFs) is increasing; however, the prediction of traumatic femoral head necrosis remains difficult. Machine learning algorithms have the potential to be superior to traditional prediction methods for the prediction of traumatic femoral head necrosis.

OBJECTIVE

The aim of this study is to use machine learning to construct a model for the analysis of risk factors and prediction of osteonecrosis of the femoral head (ONFH) in patients with FNF after internal fixation.

METHODS

We retrospectively collected preoperative, intraoperative, and postoperative clinical data of patients with FNF in 4 hospitals in Shanghai and followed up the patients for more than 2.5 years. A total of 259 patients with 43 variables were included in the study. The data were randomly divided into a training set (181/259, 69.8%) and a validation set (78/259, 30.1%). External data (n=376) were obtained from a retrospective cohort study of patients with FNF in 3 other hospitals. Least absolute shrinkage and selection operator regression and the support vector machine algorithm were used for variable selection. Logistic regression, random forest, support vector machine, and eXtreme Gradient Boosting (XGBoost) were used to develop the model on the training set. The validation set was used to tune the model hyperparameters to determine the final prediction model, and the external data were used to compare and evaluate the model performance. We compared the accuracy, discrimination, and calibration of the models to identify the best machine learning algorithm for predicting ONFH. Shapley additive explanations and local interpretable model-agnostic explanations were used to determine the interpretability of the black box model.

RESULTS

A total of 11 variables were selected for the models. The XGBoost model performed best on the validation set and external data. The accuracy, sensitivity, and area under the receiver operating characteristic curve of the model on the validation set were 0.987, 0.929, and 0.992, respectively. The accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve of the model on the external data were 0.907, 0.807, 0.935, and 0.933, respectively, and the log-loss was 0.279. The calibration curve demonstrated good agreement between the predicted probability and actual risk. The interpretability of the features and individual predictions were realized using the Shapley additive explanations and local interpretable model-agnostic explanations algorithms. In addition, the XGBoost model was translated into a self-made web-based risk calculator to estimate an individual’s probability of ONFH.

CONCLUSIONS

Machine learning performs well in predicting ONFH after internal fixation of FNF. The 6-variable XGBoost model predicted the risk of ONFH well and had good generalization ability on the external data, which can be used for the clinical prediction of ONFH after internal fixation of FNF.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3