Obtaining the Most Accurate, Explainable Model for Predicting Chronic Obstructive Pulmonary Disease: Triangulation of Multiple Linear Regression and Machine Learning Methods (Preprint)

Author:

Kamis ArnoldORCID,Gadia NidhiORCID,Luo ZilinORCID,Ng Shu XinORCID,Thumbar MansiORCID

Abstract

BACKGROUND

Lung disease is a severe problem in the United States. Despite the decreasing rates of cigarette smoking, chronic obstructive pulmonary disease (COPD) continues to be a health burden in the United States. In this paper, we focus on COPD in the United States from 2016 to 2019.

OBJECTIVE

We gathered a diverse set of non–personally identifiable information from public data sources to better understand and predict COPD rates at the core-based statistical area (CBSA) level in the United States. Our objective was to compare linear models with machine learning models to obtain the most accurate and interpretable model of COPD.

METHODS

We integrated non–personally identifiable information from multiple Centers for Disease Control and Prevention sources and used them to analyze COPD with different types of methods. We included cigarette smoking, a well-known contributing factor, and race/ethnicity because health disparities among different races and ethnicities in the United States are also well known. The models also included the air quality index, education, employment, and economic variables. We fitted models with both multiple linear regression and machine learning methods.

RESULTS

The most accurate multiple linear regression model has variance explained of 81.1%, mean absolute error of 0.591, and symmetric mean absolute percentage error of 9.666. The most accurate machine learning model has variance explained of 85.7%, mean absolute error of 0.456, and symmetric mean absolute percentage error of 6.956. Overall, cigarette smoking and household income are the strongest predictor variables. Moderately strong predictors include education level and unemployment level, as well as American Indian or Alaska Native, Black, and Hispanic population percentages, all measured at the CBSA level.

CONCLUSIONS

This research highlights the importance of using diverse data sources as well as multiple methods to understand and predict COPD. The most accurate model was a gradient boosted tree, which captured nonlinearities in a model whose accuracy is superior to the best multiple linear regression. Our interpretable models suggest ways that individual predictor variables can be used in tailored interventions aimed at decreasing COPD rates in specific demographic and ethnographic communities. Gaps in understanding the health impacts of poor air quality, particularly in relation to climate change, suggest a need for further research to design interventions and improve public health.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3