A novel case-based reasoning system for breast cancer diagnosis: considering the effects of external characteristics of cases (Preprint)

Author:

Gu DongxiaoORCID,Zhao WangORCID,Yang XuejieORCID,Su Kaixiang,Liang Changyong,Zhang Gongrang,Zolotarev Oleg V.

Abstract

BACKGROUND

Artificial intelligence can help physicians improve the accuracy of breast cancer diagnosis. However, the effectiveness of AI applications is limited by doctors’ adoption of the results recommended by the AI systems. A case-based reasoning system for breast cancer diagnosis (CBR-BCD) that considers the effects of external characteristics of cases (ECC) can not only provide doctors with more accurate results for auxiliary diagnosis, but also improve doctors’ trust in the results, so as to encourage doctors to adopt the results recommended by the system.

OBJECTIVE

The objective of our study is to develop a novel integrated case-based reasoning (CBR) framework based on Naive Bayes and K-Nearest Neighbor (KNN) algorithms considering the effects of external characteristics of cases (CBR-ECC) and a corresponding system named CBR-BCD to assist in diagnosis and promote adoption by doctors.

METHODS

We used a real-world data set from the Maputo Central Hospital in Mozambique and constructed the CBR-ECC model and corresponding CBR-BCD system. We performed data processing and obtained six internal features and three external features of the cases. We randomly divided the 1214 cases into a training group and a testing group. The performance of the model was evaluated by accuracy and the area under the receiver operating characteristic curve (AUC).

RESULTS

The system based on the CBR-ECC model was developed. In the first stage of this model, Naive Bayes showed the best performance, compared with KNN and J48 decision tree classifiers, with an accuracy rate of 95.87%. In the second stage, the accuracy of the KNN model with the optimal K value of 2 was 99.40%. In the third stage, after considering the external characteristics of the cases, the rankings of recommendation changed. Finally, we report the users’ evaluation of the novel CBR system in a real hospital scenario; we found that it is superior to the original system.

CONCLUSIONS

CBR-BCD not only enables accurate case recommendations to support health practitioners in diagnosing breast cancer and reducing diagnostic inaccuracies, but also facilitates the adoption of system-recommended results by physicians, which is valuable for clinicians to assist in diagnosis. It enables the early screening of breast cancer to improve the quality of breast cancer management and reduces the socioeconomic burden compared to traditional methods.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3