Racial Composition of Social Environments Over the Life Course Using the Pictorial Racial Composition Measure: Development and Validation Study (Preprint)

Author:

Bather Jemar RORCID,Kaphingst Kimberly AORCID,Goodman Melody SORCID

Abstract

BACKGROUND

Studies investigating the impact of racial segregation on health have reported mixed findings and tended to focus on the racial composition of neighborhoods. These studies use varying racial composition measures, such as census data or investigator-adapted questions, which are currently limited to assessing one dimension of neighborhood racial composition.

OBJECTIVE

This study aims to develop and validate a novel racial segregation measure, the Pictorial Racial Composition Measure (PRCM).

METHODS

The PRCM is a 10-item questionnaire of pictures representing social environments across adolescence and adulthood: neighborhoods and blocks (adolescent and current), schools and classrooms (junior high and high school), workplace, and place of worship. Cognitive interviews (n=13) and surveys (N=549) were administered to medically underserved patients at a primary care clinic at the Barnes-Jewish Hospital. Development of the PRCM occurred across pilot and main phases. For each social environment and survey phase (pilot and main), we computed positive versus negative pairwise comparisons: <i>mostly Black versus all other categories, half Black versus all other categories,</i> and <i>mostly White versus all other categories</i>. We calculated the following validity metrics for each pairwise comparison: sensitivity, specificity, correct classification rate, positive predictive value, negative predictive value, positive likelihood ratio, negative likelihood ratio, false positive rate, and false negative rate.

RESULTS

For each social environment, the mostly Black and mostly White dichotomizations generated better validity metrics relative to the half Black dichotomization. Across all 10 social environments in the pilot and main phases, mostly Black and mostly White dichotomizations exhibited a moderate-to-high sensitivity, specificity, correct classification rate, positive predictive value, and negative predictive value. The positive likelihood ratio values were &gt;1, and the negative likelihood ratio values were close to 0. The false positive and negative rates were low to moderate.

CONCLUSIONS

These findings support that using either the <i>mostly Black versus other categories</i> or the <i>mostly White versus other categories</i> dichotomizations may provide accurate and reliable measures of racial composition across the 10 social environments. The PRCM can serve as a uniform measure across disciplines, capture multiple social environments over the life course, and be administered during one study visit. The PRCM also provides an added window into understanding how structural racism has impacted minoritized communities and may inform equitable intervention and prevention efforts to improve lives.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3