Using Natural Language Processing to Explore Social Media Opinions on Food Security: Sentiment Analysis and Topic Modeling Study (Preprint)

Author:

Molenaar AnnikaORCID,Lukose DicksonORCID,Brennan LindaORCID,Jenkins Eva LORCID,McCaffrey Tracy AORCID

Abstract

BACKGROUND

Social media has the potential to be of great value in understanding patterns in public health using large-scale analysis approaches (eg, data science and natural language processing [NLP]), 2 of which have been used in public health: sentiment analysis and topic modeling; however, their use in the area of food security and public health nutrition is limited.

OBJECTIVE

This study aims to explore the potential use of NLP tools to gather insights from real-world social media data on the public health issue of food security.

METHODS

A search strategy for obtaining tweets was developed using food security terms. Tweets were collected using the Twitter application programming interface from January 1, 2019, to December 31, 2021, filtered for Australia-based users only. Sentiment analysis of the tweets was performed using the Valence Aware Dictionary and Sentiment Reasoner. Topic modeling exploring the content of tweets was conducted using latent Dirichlet allocation with BigML (BigML, Inc). Sentiment, topic, and engagement (the sum of likes, retweets, quotations, and replies) were compared across years.

RESULTS

In total, 38,070 tweets were collected from 14,880 Twitter users. Overall, the sentiment when discussing food security was positive, although this varied across the 3 years. Positive sentiment remained higher during the COVID-19 lockdown periods in Australia. The topic model contained 10 topics (in order from highest to lowest probability in the data set): “Global production,” “Food insecurity and health,” “Use of food banks,” “Giving to food banks,” “Family poverty,” “Food relief provision,” “Global food insecurity,” “Climate change,” “Australian food insecurity,” and “Human rights.” The topic “Giving to food banks,” which focused on support and donation, had the highest proportion of positive sentiment, and “Global food insecurity,” which covered food insecurity prevalence worldwide, had the highest proportion of negative sentiment. When compared with news, there were some events, such as COVID-19 support payment introduction and bushfires across Australia, that were associated with high periods of positive or negative sentiment. Topics related to food insecurity prevalence, poverty, and food relief in Australia were not consistently more prominent during the COVID-19 pandemic than before the pandemic. Negative tweets received substantially higher engagement across 2019 and 2020. There was no clear relationship between topics that were more likely to be positive or negative and have higher or lower engagement, indicating that the identified topics are discrete issues.

CONCLUSIONS

In this study, we demonstrated the potential use of sentiment analysis and topic modeling to explore evolution in conversations on food security using social media data. Future use of NLP in food security requires the context of and interpretation by public health experts and the use of broader data sets, with the potential to track dimensions or events related to food security to inform evidence-based decision-making in this area.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3