Examining analytical practices in Latent Dirichlet Allocation within Psychological Science: A Scoping Review (Preprint)

Author:

Hagg LaurynORCID,Merkouris Stephanie SORCID,O’Dea Gypsy AORCID,Francis Lauren MORCID,Greenwood Christopher JORCID,Fuller-Tyszkiewicz MatthewORCID,Westrupp Elizabeth MORCID,Macdonald Jacqui AORCID,Youssef George JORCID

Abstract

BACKGROUND

Background: Latent Dirichlet Allocation (LDA) is a tool for rapidly synthesising meaning from ‘big data’, but outputs can be sensitive to decisions made during the analytic pipeline. This review will focus on the complex analytical practices specific to LDA, which existing practical guides for conducting LDA have not addressed.

OBJECTIVE

Objectives: This scoping review will use key analytical steps (data selection, data pre-processing, and data analysis) as a framework to understand the methodological approaches being used in psychology research utilising LDA.

METHODS

Methods: Four psychology and health databases were searched. Studies were included if they used LDA to analyse written words and focussed on a psychological construct/issue. The data charting processes was constructed and employed based on common data selection, pre-processing, and data analysis steps.

RESULTS

Results: Forty-seven studies were included. These explored a range of research areas and most sourced their data from social media platforms. While some studies reported on pre-processing and data analytic steps taken, most studies did not provide sufficient detail for reproducibility. Furthermore, debate surrounding the necessity of certain pre-processing and data analysis steps is revealed.

CONCLUSIONS

Conclusions: Findings highlight the growing use of LDA in psychological science. However, there is a need to improve analytical reporting standards, and identify comprehensive and evidence based best practice recommendations. To work towards this, we have developed an LDA Preferred Reporting Checklist which will allow for consistent documentation of LDA analytic decisions, and reproducible research outcomes.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3