BACKGROUND
Spontaneous reporting systems (SRSs) have been increasingly established to collect adverse drug events for fostering adverse drug reaction (ADR) detection and analysis research. SRS data contain personal information, and so their publication requires data anonymization to prevent the disclosure of individuals’ privacy. We have previously proposed a privacy model called MS(<i>k</i>, <i>θ*</i>)-bounding and the associated MS-Anonymization algorithm to fulfill the anonymization of SRS data. In the real world, the SRS data usually are released periodically (eg, FDA Adverse Event Reporting System [FAERS]) to accommodate newly collected adverse drug events. Different anonymized releases of SRS data available to the attacker may thwart our single-release-focus method, that is, MS(<i>k</i>, <i>θ*</i>)-bounding.
OBJECTIVE
We investigate the privacy threat caused by periodical releases of SRS data and propose anonymization methods to prevent the disclosure of personal privacy information while maintaining the utility of published data.
METHODS
We identify potential attacks on periodical releases of SRS data, namely, BFL-attacks, mainly caused by follow-up cases. We present a new privacy model called PPMS(<i>k</i>, <i>θ*</i>)-bounding, and propose the associated PPMS-Anonymization algorithm and 2 improvements: PPMS+-Anonymization and PPMS++-Anonymization. Empirical evaluations were performed using 32 selected FAERS quarter data sets from 2004Q1 to 2011Q4. The performance of the proposed versions of PPMS-Anonymization was inspected against MS-Anonymization from some aspects, including data distortion, measured by normalized information loss; privacy risk of anonymized data, measured by dangerous identity ratio and dangerous sensitivity ratio; and data utility, measured by the bias of signal counting and strength (proportional reporting ratio).
RESULTS
The best version of PPMS-Anonymization, PPMS++-Anonymization, achieves nearly the same quality as MS-Anonymization in both privacy protection and data utility. Overall, PPMS++-Anonymization ensures zero privacy risk on record and attribute linkage, and exhibits 51%-78% and 59%-82% improvements on information loss over PPMS+-Anonymization and PPMS-Anonymization, respectively, and significantly reduces the bias of ADR signal.
CONCLUSIONS
The proposed PPMS(<i>k</i>, <i>θ*</i>)-bounding model and PPMS-Anonymization algorithm are effective in anonymizing SRS data sets in the periodical data publishing scenario, preventing the series of releases from disclosing personal sensitive information caused by BFL-attacks while maintaining the data utility for ADR signal detection.