Privacy-Preserving Anonymity for Periodical Releases of Spontaneous Adverse Drug Event Reporting Data: Algorithm Development and Validation (Preprint)

Author:

Wang Jie-TengORCID,Lin Wen-YangORCID

Abstract

BACKGROUND

Spontaneous reporting systems (SRSs) have been increasingly established to collect adverse drug events for fostering adverse drug reaction (ADR) detection and analysis research. SRS data contain personal information, and so their publication requires data anonymization to prevent the disclosure of individuals’ privacy. We have previously proposed a privacy model called MS(<i>k</i>, <i>θ*</i>)-bounding and the associated MS-Anonymization algorithm to fulfill the anonymization of SRS data. In the real world, the SRS data usually are released periodically (eg, FDA Adverse Event Reporting System [FAERS]) to accommodate newly collected adverse drug events. Different anonymized releases of SRS data available to the attacker may thwart our single-release-focus method, that is, MS(<i>k</i>, <i>θ*</i>)-bounding.

OBJECTIVE

We investigate the privacy threat caused by periodical releases of SRS data and propose anonymization methods to prevent the disclosure of personal privacy information while maintaining the utility of published data.

METHODS

We identify potential attacks on periodical releases of SRS data, namely, BFL-attacks, mainly caused by follow-up cases. We present a new privacy model called PPMS(<i>k</i>, <i>θ*</i>)-bounding, and propose the associated PPMS-Anonymization algorithm and 2 improvements: PPMS+-Anonymization and PPMS++-Anonymization. Empirical evaluations were performed using 32 selected FAERS quarter data sets from 2004Q1 to 2011Q4. The performance of the proposed versions of PPMS-Anonymization was inspected against MS-Anonymization from some aspects, including data distortion, measured by normalized information loss; privacy risk of anonymized data, measured by dangerous identity ratio and dangerous sensitivity ratio; and data utility, measured by the bias of signal counting and strength (proportional reporting ratio).

RESULTS

The best version of PPMS-Anonymization, PPMS++-Anonymization, achieves nearly the same quality as MS-Anonymization in both privacy protection and data utility. Overall, PPMS++-Anonymization ensures zero privacy risk on record and attribute linkage, and exhibits 51%-78% and 59%-82% improvements on information loss over PPMS+-Anonymization and PPMS-Anonymization, respectively, and significantly reduces the bias of ADR signal.

CONCLUSIONS

The proposed PPMS(<i>k</i>, <i>θ*</i>)-bounding model and PPMS-Anonymization algorithm are effective in anonymizing SRS data sets in the periodical data publishing scenario, preventing the series of releases from disclosing personal sensitive information caused by BFL-attacks while maintaining the data utility for ADR signal detection.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3