A Language Model–Powered Simulated Patient With Automated Feedback for History Taking: Prospective Study (Preprint)

Author:

Holderried FriederikeORCID,Stegemann-Philipps ChristianORCID,Herrmann-Werner AnneORCID,Festl-Wietek TeresaORCID,Holderried MartinORCID,Eickhoff CarstenORCID,Mahling MoritzORCID

Abstract

BACKGROUND

Although history taking is fundamental for diagnosing medical conditions, teaching and providing feedback on the skill can be challenging due to resource constraints. Virtual simulated patients and web-based chatbots have thus emerged as educational tools, with recent advancements in artificial intelligence (AI) such as large language models (LLMs) enhancing their realism and potential to provide feedback.

OBJECTIVE

In our study, we aimed to evaluate the effectiveness of a Generative Pretrained Transformer (GPT) 4 model to provide structured feedback on medical students’ performance in history taking with a simulated patient.

METHODS

We conducted a prospective study involving medical students performing history taking with a GPT-powered chatbot. To that end, we designed a chatbot to simulate patients’ responses and provide immediate feedback on the comprehensiveness of the students’ history taking. Students’ interactions with the chatbot were analyzed, and feedback from the chatbot was compared with feedback from a human rater. We measured interrater reliability and performed a descriptive analysis to assess the quality of feedback.

RESULTS

Most of the study’s participants were in their third year of medical school. A total of 1894 question-answer pairs from 106 conversations were included in our analysis. GPT-4’s role-play and responses were medically plausible in more than 99% of cases. Interrater reliability between GPT-4 and the human rater showed “almost perfect” agreement (Cohen κ=0.832). Less agreement (κ<0.6) detected for 8 out of 45 feedback categories highlighted topics about which the model’s assessments were overly specific or diverged from human judgement.

CONCLUSIONS

The GPT model was effective in providing structured feedback on history-taking dialogs provided by medical students. Although we unraveled some limitations regarding the specificity of feedback for certain feedback categories, the overall high agreement with human raters suggests that LLMs can be a valuable tool for medical education. Our findings, thus, advocate the careful integration of AI-driven feedback mechanisms in medical training and highlight important aspects when LLMs are used in that context.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3