Data flow construction and quality evaluation of electronic source data (eSource) in Clinical Trials:Pilot study based on Hospital Electronic Medical Records in China (Preprint)

Author:

Yuan YanNanORCID,Mei Yun,zhao shuhua,Dai ShengLong,Liu XiaoHong,Sun XiaoJing,Fu ZhiYing,Zhou LiHeng,Ai Jie,Ma LiHeng,Jiang minORCID

Abstract

BACKGROUND

The traditional clinical trial data collection process requires a Clinical Research Coordinator (CRC) who is authorized by the investigators to read from the hospital electronic medical record. Using electronic source data opens a new path to extract subjects' data from EHR and transfer directly to EDC (often the method is referred to as eSource ).The eSource technology in clinical trial data flow can improve data quality without compromising timeliness. At the same time, improved data collection efficiency reduces clinical trial costs.

OBJECTIVE

Explore how to extract clinical trial-related data from hospital electronic health record system (EHR), transform the data into an electronic data capture system (EDC) required format, and transfer it into sponsor's environment. Evaluate the transferred datasets to validate the availability, completeness, and accuracy of building eSource dataflow.

METHODS

A prospective clinical trial study registered on the "Drug Clinical Trial Registration and Information Disclosure Platform (http://www.chinadrugtrials.org.cn/) " was selected, and the production data environment of EHR relied on to extract the structured data of four Case Report Form(CRF) data modules: demographics, vital signs, local laboratory, and concomitant medications from EHR. Extracted data was mapped & transformed, de-identified, and transferred to the sponsor’s environments. Data validation was performed based on availability, completeness and accuracy.

RESULTS

In a secure and controlled data environment, clinical trial data was successfully transferred from a hospital EHR to sponsor's environment with 100% transcriptional accuracy, but availability and completeness could be improved.

CONCLUSIONS

Data availability is low due to some fields required in EDC not being available directly in the EHR. Concurrently, some data is still in unstructured data format and paper-based medical record data, therefore data completeness in the EHR is low. The top-level design of eSource and the construction of hospital electronic data standards should help lay a foundation for full electronic data flow from EHR to EDC in future.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3