CO-CONNECT: A hybrid architecture to facilitate rapid discovery and access to UK wide data in the response to the COVID-19 pandemic (Preprint)

Author:

Jefferson EmilyORCID,Cole ChristianORCID,Mumtaz ShahzadORCID,Cox SamORCID,Giles Tom,Adejumo Samuel,Urwin EsmondORCID,Lea Daniel,McDonald Calum,Best Joseph,Masood Erum,Milligan GordonORCID,Johnston JennyORCID,Horban ScottORCID,Birced Ipek,Hall ChristopherORCID,Jackson AaronORCID,Collins Clare,Rising Sam,Dodsley Charlotte,Hampton Jill,Hadfield Andrew,Santos Roberto,Tarr Simon,Panagi Vasiliki,Lavagna Joseph,Jackson TracyORCID,Chuter AntonyORCID,Beggs Jillian,Martinez-Queipo MagdalenaORCID,Ward HelenORCID,von Ziegenweidt JulieORCID,Burns FrancesORCID,Martin JoORCID,Sebire NeilORCID,Morris CaroleORCID,Bradley DeclanORCID,Baxter Rob,Ahonen-Bishop AnniORCID,Shoemark AmeliaORCID,Valdes AnaORCID,Ollivere Benjamin JORCID,Manisty CharlotteORCID,Eyre David WilliamORCID,Gallant StephanieORCID,Joy GeorgeORCID,McAuley AndrewORCID,Connell David WORCID,Northstone KateORCID,Jeffery Katie JMORCID,Di Angelantonio EmanueleORCID,McMahon AmyORCID,Walker MatthewORCID,Semple Malcolm GracieORCID,Sims Jessica MaiORCID,Lawrence EmmaORCID,Davies BethanORCID,Baillie J KennethORCID,Tang Ming,Leeming GaryORCID,Power LindaORCID,Breeze ThomasORCID,Gilson NatalieORCID,Murray Duncan JORCID,Orton ChrisORCID,Pierce IainORCID,Hall IanORCID,Ladhani ShamezORCID,Whitaker MatthewORCID,Shallcross LauraORCID,Seymour DavidORCID,Varma SusheelORCID,Reilly GerryORCID,Morris AndrewORCID,Hopkins Susan,Sheikh AzizORCID,Quinlan PhilipORCID

Abstract

BACKGROUND

COVID-19 data have been generated across the UK as a by-product of clinical care and public health provision, and numerous bespoke and repurposed research endeavours. Analysis of these data has underpinned the UK’s response to the pandemic and informed public health policies and clinical guidelines. However, these data are held by different organisations and this fragmented landscape has presented challenges for public health agencies and researchers as they struggle to find, navigate permissions to access and interrogate the data they need to inform the pandemic response at pace.

OBJECTIVE

To transform UK COVID-19 diagnostic datasets to be Findable, Accessible, Interoperable and Reusable (FAIR).

METHODS

A federated infrastructure model was rapidly built to enable the automated and reproducible mapping of health Data Partners’ pseudonymised data to the OMOP common data model without the need for any data to leave the data controllers’ secure environments and to support federated cohort discovery queries and meta-analysis.

RESULTS

56 datasets from 19 organisations are being connected to the federated network. The data includes research cohorts and COVID-19 data collected through routine health care provision linked to longitudinal healthcare records and demographics. The infrastructure is live, supporting aggregate level querying of data across the UK.

CONCLUSIONS

CO-CONNECT was developed by a multidisciplinary team enabling rapid COVID-19 data discovery, instantaneous meta-analysis across data sources, and is researching streamlined data extraction for egress into a Trusted Research Environment (TRE) for research and public health analysis. CO-CONNECT has the potential to make UK health data more interconnected and better able to answer national-level research questions whilst maintaining patient confidentiality and local governance procedures.

CLINICALTRIAL

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3